chatGPT_voice / app.py
RamAnanth1's picture
Update app.py
c5f762e
raw
history blame
5.49 kB
import gradio as gr
import os
import json
import requests
whisper = gr.Interface.load(name="spaces/sanchit-gandhi/whisper-large-v2")
#input_message.submit([input_message, history], [input_message, chatbot, history])
def translate_or_transcribe(audio, task):
text_result = whisper(audio, None, task, fn_index=0)
return text_result
#Streaming endpoint
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
def predict(inputs, top_p, temperature, openai_api_key, history=[]):
payload = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": f"{inputs}"}],
"temperature" : 1.0,
"top_p":1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
history.append(inputs)
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
#response = requests.post(API_URL, headers=headers, json=payload, stream=True)
token_counter = 0
partial_words = ""
counter=0
for chunk in response.iter_lines():
if counter == 0:
counter+=1
continue
counter+=1
# check whether each line is non-empty
if chunk :
# decode each line as response data is in bytes
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
break
#print(json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"])
partial_words = partial_words + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter+=1
yield chat, history # resembles {chatbot: chat, state: history}
def reset_textbox():
return gr.update(value='')
title = """<h1 align="center">🔥ChatGPT API 🚀Streaming🚀 with Whisper</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of a 20B large language model.
"""
#<a href="https://huggingface.co/spaces/ysharma/ChatGPTwithAPI?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate Space with GPU Upgrade for fast Inference & no queue<br>
with gr.Blocks(css = """#col_container {width: 700px; margin-left: auto; margin-right: auto;}
#chatbot {height: 400px; overflow: auto;}""") as demo:
gr.HTML(title)
gr.HTML()
gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPTwithAPI?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
with gr.Column(elem_id = "col_container"):
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here")
chatbot = gr.Chatbot(elem_id='chatbot') #c
prompt_input_audio = gr.Audio(source="microphone",type="filepath",label="Record Audio Input"
)
translate_btn = gr.Button("Check Whisper first ? 👍")
whisper_task = gr.Radio(["translate", "transcribe"], value="translate", show_label=False)
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
state = gr.State([]) #s
b1 = gr.Button()
#inputs, top_p, temperature, top_k, repetition_penalty
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=0.5, step=0.1, interactive=True, label="Temperature",)
#top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
translate_btn.click(fn=translate_or_transcribe,
inputs=[prompt_input_audio,whisper_task],
outputs=inputs
)
inputs.submit( predict, [inputs, top_p, temperature, openai_api_key, state], [chatbot, state],)
b1.click( predict, [inputs, top_p, temperature, openai_api_key, state], [chatbot, state],)
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
#gr.Markdown(description)
gr.HTML('''
<p>Note: Please be aware that audio records from iOS devices will not be decoded as expected by Gradio. For the best experience, record your voice from a computer instead of your smartphone ;)</p>
''')
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=RamAnanth1.chatGPT_voice)")
demo.queue().launch(debug=True)