Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import json | |
import requests | |
whisper = gr.Interface.load(name="spaces/sanchit-gandhi/whisper-large-v2") | |
#input_message.submit([input_message, history], [input_message, chatbot, history]) | |
def translate_or_transcribe(audio, task): | |
text_result = whisper(audio, None, task, fn_index=0) | |
return text_result | |
#Streaming endpoint | |
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream" | |
def predict(inputs, top_p, temperature, openai_api_key, history=[]): | |
payload = { | |
"model": "gpt-3.5-turbo", | |
"messages": [{"role": "user", "content": f"{inputs}"}], | |
"temperature" : 1.0, | |
"top_p":1.0, | |
"n" : 1, | |
"stream": True, | |
"presence_penalty":0, | |
"frequency_penalty":0, | |
} | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openai_api_key}" | |
} | |
history.append(inputs) | |
# make a POST request to the API endpoint using the requests.post method, passing in stream=True | |
response = requests.post(API_URL, headers=headers, json=payload, stream=True) | |
#response = requests.post(API_URL, headers=headers, json=payload, stream=True) | |
token_counter = 0 | |
partial_words = "" | |
counter=0 | |
for chunk in response.iter_lines(): | |
if counter == 0: | |
counter+=1 | |
continue | |
counter+=1 | |
# check whether each line is non-empty | |
if chunk : | |
# decode each line as response data is in bytes | |
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: | |
break | |
#print(json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]) | |
partial_words = partial_words + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"] | |
if token_counter == 0: | |
history.append(" " + partial_words) | |
else: | |
history[-1] = partial_words | |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list | |
token_counter+=1 | |
yield chat, history # resembles {chatbot: chat, state: history} | |
def reset_textbox(): | |
return gr.update(value='') | |
title = """<h1 align="center">🔥ChatGPT API 🚀Streaming🚀 with Whisper</h1>""" | |
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: | |
``` | |
User: <utterance> | |
Assistant: <utterance> | |
User: <utterance> | |
Assistant: <utterance> | |
... | |
``` | |
In this app, you can explore the outputs of a 20B large language model. | |
""" | |
#<a href="https://huggingface.co/spaces/ysharma/ChatGPTwithAPI?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate Space with GPU Upgrade for fast Inference & no queue<br> | |
with gr.Blocks(css = """#col_container {width: 700px; margin-left: auto; margin-right: auto;} | |
#chatbot {height: 400px; overflow: auto;}""") as demo: | |
gr.HTML(title) | |
gr.HTML() | |
gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPTwithAPI?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''') | |
with gr.Column(elem_id = "col_container"): | |
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here") | |
chatbot = gr.Chatbot(elem_id='chatbot') #c | |
prompt_input_audio = gr.Audio(source="microphone",type="filepath",label="Record Audio Input" | |
) | |
translate_btn = gr.Button("Check Whisper first ? 👍") | |
whisper_task = gr.Radio(["translate", "transcribe"], value="translate", show_label=False) | |
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t | |
state = gr.State([]) #s | |
b1 = gr.Button() | |
#inputs, top_p, temperature, top_k, repetition_penalty | |
with gr.Accordion("Parameters", open=False): | |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) | |
temperature = gr.Slider( minimum=-0, maximum=5.0, value=0.5, step=0.1, interactive=True, label="Temperature",) | |
#top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",) | |
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", ) | |
translate_btn.click(fn=translate_or_transcribe, | |
inputs=[prompt_input_audio,whisper_task], | |
outputs=inputs | |
) | |
inputs.submit( predict, [inputs, top_p, temperature, openai_api_key, state], [chatbot, state],) | |
b1.click( predict, [inputs, top_p, temperature, openai_api_key, state], [chatbot, state],) | |
b1.click(reset_textbox, [], [inputs]) | |
inputs.submit(reset_textbox, [], [inputs]) | |
#gr.Markdown(description) | |
gr.HTML(''' | |
<p>Note: Please be aware that audio records from iOS devices will not be decoded as expected by Gradio. For the best experience, record your voice from a computer instead of your smartphone ;)</p> | |
''') | |
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=RamAnanth1.chatGPT_voice)") | |
demo.queue().launch(debug=True) |