Spaces:
Runtime error
Runtime error
File size: 5,651 Bytes
830a45d 203bf3f 830a45d 203bf3f 830a45d 203bf3f 830a45d 203bf3f 830a45d 203bf3f 830a45d 8963f6c 203bf3f 830a45d 203bf3f a8796fc 203bf3f 6b46d12 830a45d 31f2cc7 203bf3f 830a45d 8963f6c 830a45d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import os
import json
import requests
import time
# AssemblyAI transcript endpoint (where we submit the file)
transcript_endpoint = "https://api.assemblyai.com/v2/transcript"
upload_endpoint = "https://api.assemblyai.com/v2/upload"
# Helper function to upload data
def _read_file(filename, chunk_size=5242880):
with open(filename, "rb") as f:
while True:
data = f.read(chunk_size)
if not data:
break
yield data
def get_transcript_url(url, api_token):
headers={
"Authorization": api_token,
"Content-Type": "application/json"
}
# JSON that tells the API which file to trancsribe
json={
# URL of the audio file to process
"audio_url": url,
# Turn on speaker labels
"speaker_labels": True,
# Turn on cusom vocabulary
"word_boost": ["assembly ai"],
# Turn on custom spelling
"custom_spelling": [
{"from": ["assembly AI"], "to": "AssemblyAI"},
{"from": ["assembly AI's"], "to": "AssemblyAI's"}
],
# Turn on PII Redaction and specify policies
"redact_pii": True,
"redact_pii_policies": ["drug", "injury", "person_name"],
"redact_pii_audio": True,
# Turn on Auto Highlights
"auto_highlights": True,
# Turn on Content Moderation
"content_safety": True,
# Turn on Topic Detection
"iab_categories": True,
# Turn on Sentiment Analysis
"sentiment_analysis": True,
# Turn on Summarization and specify configuration
"summarization": True,
"summary_model": "informative",
"summary_type": "bullets",
# Turn on Entity Detection
"entity_detection": True,}
response = requests.post(
transcript_endpoint,
json=json,
headers=headers # Authorization to link this transcription with your account
)
polling_endpoint = f"https://api.assemblyai.com/v2/transcript/{response.json()['id']}"
while True:
transcription_result = requests.get(polling_endpoint, headers=headers).json()
if transcription_result['status'] == 'completed':
break
elif transcription_result['status'] == 'error':
raise RuntimeError(f"Transcription failed: {transcription_result['error']}")
else:
time.sleep(3)
return transcription_result['text']
def get_transcript_file(filename, api_token):
headers={
"Authorization": api_token,
"Content-Type": "application/json"
}
upload_response = requests.post(
upload_endpoint,
headers=headers,
data=_read_file(filename))
# JSON that tells the API which file to trancsribe
json = {
# URL of the audio file to process
"audio_url": upload_response.json()['upload_url'],
# Turn on speaker labels
"speaker_labels": True,
# Turn on cusom vocabulary
"word_boost": ["assembly ai"],
# Turn on custom spelling
"custom_spelling": [
{"from": ["assembly AI"], "to": "AssemblyAI"},
{"from": ["assembly AI's"], "to": "AssemblyAI's"}
],
# Turn on PII Redaction and specify policies
"redact_pii": True,
"redact_pii_policies": ["drug", "injury", "person_name"],
"redact_pii_audio": True,
# Turn on Auto Highlights
"auto_highlights": True,
# Turn on Content Moderation
"content_safety": True,
# Turn on Topic Detection
"iab_categories": True,
# Turn on Sentiment Analysis
"sentiment_analysis": True,
# Turn on Summarization and specify configuration
"summarization": True,
"summary_model": "informative",
"summary_type": "bullets",
# Turn on Entity Detection
"entity_detection": True,
}
response = requests.post(
transcript_endpoint,
json=json,
headers=headers # Authorization to link this transcription with your account
)
polling_endpoint = f"https://api.assemblyai.com/v2/transcript/{response.json()['id']}"
while True:
transcription_result = requests.get(polling_endpoint, headers=headers).json()
if transcription_result['status'] == 'completed':
break
elif transcription_result['status'] == 'error':
raise RuntimeError(f"Transcription failed: {transcription_result['error']}")
else:
time.sleep(3)
return transcription_result['text']
title = """<h1 align="center">🔥Conformer-1 API </h1>"""
description = """
## In this demo, you can explore the outputs of a Conformer-1 Speech Recognition Model from AssemblyAI.
"""
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
""") as demo:
gr.HTML(title)
gr.Markdown(description)
assemblyai_api_key = gr.Textbox(type='password', label="Enter your AssemblyAI API key here")
with gr.Column(elem_id = "col_container"):
with gr.Tab("Audio URL file"):
inputs = gr.Textbox(label = "Enter the url for the audio file")
b1 = gr.Button('Transcribe')
with gr.Tab("Upload Audio as File"):
audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath")
transcribe_audio_u = gr.Button('Transcribe')
transcript = gr.Textbox(label = "Transcript Result" )
inputs.submit(get_transcript_url, [inputs, assemblyai_api_key], [transcript])
b1.click(get_transcript_url, [inputs, assemblyai_api_key], [transcript])
transcibe_audio_u.click(get_transcript_file, [audio_input_u, assemblyai_api_key], [transcript])
demo.queue().launch(debug=True)
|