File size: 5,651 Bytes
830a45d
 
 
 
 
 
 
 
 
203bf3f
 
 
 
 
 
 
 
 
 
 
 
830a45d
 
 
 
 
203bf3f
830a45d
203bf3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830a45d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203bf3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830a45d
 
203bf3f
830a45d
 
 
 
 
8963f6c
203bf3f
 
 
830a45d
203bf3f
a8796fc
203bf3f
 
 
 
 
 
 
6b46d12
830a45d
 
 
31f2cc7
203bf3f
830a45d
8963f6c
830a45d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
import os 
import json 
import requests
import time
 
# AssemblyAI transcript endpoint (where we submit the file)
transcript_endpoint = "https://api.assemblyai.com/v2/transcript"

upload_endpoint = "https://api.assemblyai.com/v2/upload"


# Helper function to upload data
def _read_file(filename, chunk_size=5242880):
    with open(filename, "rb") as f:
        while True:
            data = f.read(chunk_size)
            if not data:
                break
            yield data
            
def get_transcript_url(url, api_token):
    headers={
    "Authorization": api_token,
    "Content-Type": "application/json"
    }
    
    # JSON that tells the API which file to trancsribe
    json={
    # URL of the audio file to process
    "audio_url": url,

    # Turn on speaker labels
    "speaker_labels": True,

    # Turn on cusom vocabulary
    "word_boost": ["assembly ai"],

    # Turn on custom spelling
    "custom_spelling": [
        {"from": ["assembly AI"], "to": "AssemblyAI"},
        {"from": ["assembly AI's"], "to": "AssemblyAI's"}
        ],

    # Turn on PII Redaction and specify policies
    "redact_pii": True,
    "redact_pii_policies": ["drug", "injury", "person_name"],
    "redact_pii_audio": True,

    # Turn on Auto Highlights
    "auto_highlights": True,

    # Turn on Content Moderation
    "content_safety": True,

    # Turn on Topic Detection
    "iab_categories": True,

    # Turn on Sentiment Analysis
    "sentiment_analysis": True,

    # Turn on Summarization and specify configuration
    "summarization": True,
    "summary_model": "informative",
    "summary_type": "bullets",

    # Turn on Entity Detection
    "entity_detection": True,}

    response = requests.post(
        transcript_endpoint,
        json=json,
        headers=headers  # Authorization to link this transcription with your account
      )

    polling_endpoint = f"https://api.assemblyai.com/v2/transcript/{response.json()['id']}"
    while True:
      transcription_result = requests.get(polling_endpoint, headers=headers).json()
      if transcription_result['status'] == 'completed':
        break
      elif transcription_result['status'] == 'error':
        raise RuntimeError(f"Transcription failed: {transcription_result['error']}")
      else:
        time.sleep(3)
    return transcription_result['text']

def get_transcript_file(filename, api_token):
    headers={
    "Authorization": api_token,
    "Content-Type": "application/json"
    }
    
    upload_response = requests.post(
    upload_endpoint,
    headers=headers, 
    data=_read_file(filename))
    
    # JSON that tells the API which file to trancsribe
    json = {
    # URL of the audio file to process
    "audio_url": upload_response.json()['upload_url'],

    # Turn on speaker labels
    "speaker_labels": True,

    # Turn on cusom vocabulary
    "word_boost": ["assembly ai"],

    # Turn on custom spelling
    "custom_spelling": [
        {"from": ["assembly AI"], "to": "AssemblyAI"},
        {"from": ["assembly AI's"], "to": "AssemblyAI's"}
        ],

    # Turn on PII Redaction and specify policies
    "redact_pii": True,
    "redact_pii_policies": ["drug", "injury", "person_name"],
    "redact_pii_audio": True,

    # Turn on Auto Highlights
    "auto_highlights": True,

    # Turn on Content Moderation
    "content_safety": True,

    # Turn on Topic Detection
    "iab_categories": True,

    # Turn on Sentiment Analysis
    "sentiment_analysis": True,

    # Turn on Summarization and specify configuration
    "summarization": True,
    "summary_model": "informative",
    "summary_type": "bullets",

    # Turn on Entity Detection
    "entity_detection": True,
    }

    response = requests.post(
        transcript_endpoint,
        json=json,
        headers=headers  # Authorization to link this transcription with your account
      )

    polling_endpoint = f"https://api.assemblyai.com/v2/transcript/{response.json()['id']}"
    while True:
      transcription_result = requests.get(polling_endpoint, headers=headers).json()
      if transcription_result['status'] == 'completed':
        break
      elif transcription_result['status'] == 'error':
        raise RuntimeError(f"Transcription failed: {transcription_result['error']}")
      else:
        time.sleep(3)
    return transcription_result['text']


title = """<h1 align="center">🔥Conformer-1 API </h1>"""
description = """
## In this demo, you can explore the outputs of a Conformer-1 Speech Recognition Model from AssemblyAI.
"""
                
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
                """) as demo:
    gr.HTML(title)
    gr.Markdown(description)

    assemblyai_api_key = gr.Textbox(type='password', label="Enter your AssemblyAI API key here")

    with gr.Column(elem_id = "col_container"):
        
        with gr.Tab("Audio URL file"):
            inputs = gr.Textbox(label = "Enter the url for the audio file")        
            b1 = gr.Button('Transcribe')
        
        with gr.Tab("Upload Audio as File"):
            audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath")
            transcribe_audio_u = gr.Button('Transcribe')

        transcript = gr.Textbox(label = "Transcript Result" )
    
    inputs.submit(get_transcript_url, [inputs, assemblyai_api_key], [transcript])
    b1.click(get_transcript_url, [inputs, assemblyai_api_key], [transcript])

    transcibe_audio_u.click(get_transcript_file, [audio_input_u, assemblyai_api_key], [transcript])
                    
    
    demo.queue().launch(debug=True)