Spaces:
Runtime error
Runtime error
File size: 7,252 Bytes
830a45d 60136f9 9c296b9 830a45d 203bf3f f3282ff 203bf3f 3668ac8 8d2cd0e 3668ac8 8d2cd0e e8653e3 3668ac8 e8653e3 830a45d 203bf3f 830a45d e6caca8 4a6ab73 57a8cb1 e268f63 09c8fac a11f647 25a935c a11f647 25a935c a11f647 25a935c a11f647 25a935c e268f63 58d76c4 1d3dc52 830a45d 66f1e8b f3282ff 66f1e8b 203bf3f 66f1e8b 203bf3f e6caca8 203bf3f 830a45d f3282ff 830a45d e6caca8 830a45d 8963f6c 203bf3f 830a45d 203bf3f c91bff5 e8653e3 3668ac8 e8653e3 c91bff5 8ee44f6 c91bff5 00684fc e268f63 09c8fac eea7337 e6caca8 830a45d 09c8fac 3668ac8 e8653e3 830a45d 8963f6c 830a45d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import gradio as gr
import os
import json
import requests
import time
import pandas as pd
import io
from scipy.io.wavfile import write
# AssemblyAI transcript endpoint (where we submit the file)
transcript_endpoint = "https://api.assemblyai.com/v2/transcript"
upload_endpoint = "https://api.assemblyai.com/v2/upload"
headers={
"Authorization": os.environ["ASSEMBLYAI_KEY"],
"Content-Type": "application/json"
}
# Helper function to upload data
def _read_file(filename, chunk_size=5242880):
with open(filename, "rb") as f:
while True:
data = f.read(chunk_size)
if not data:
break
yield data
def _read_array(audio, chunk_size=5242880):
"""Like _read_file but for array - creates temporary unsaved "file" from sample rate and audio np.array"""
sr, aud = audio
# Create temporary "file" and write data to it
bytes_wav = bytes()
temp_file = io.BytesIO(bytes_wav)
write(temp_file, sr, aud)
while True:
data = temp_file.read(chunk_size)
if not data:
break
yield data
def get_audio_from_upload(audio):
upload_response = requests.post(
upload_endpoint,
headers=headers,
data=_read_array(audio))
return upload_response.json()['upload_url']
def get_transcript_url(audio):
url = get_audio_from_upload(audio)
# JSON that tells the API which file to trancsribe
json={
# URL of the audio file to process
"audio_url": url,
# Turn on speaker labels
"speaker_labels": True,
# Turn on cusom vocabulary
"word_boost": ["assembly ai"],
# Turn on custom spelling
"custom_spelling": [
{"from": ["assembly AI"], "to": "AssemblyAI"},
{"from": ["assembly AI's"], "to": "AssemblyAI's"}
],
# Turn on PII Redaction and specify policies
"redact_pii": True,
"redact_pii_policies": ["drug", "injury", "person_name"],
"redact_pii_audio": True,
# Turn on Auto Highlights
"auto_highlights": True,
# Turn on Content Moderation
"content_safety": True,
# Turn on Topic Detection
"iab_categories": True,
# Turn on Sentiment Analysis
"sentiment_analysis": True,
# Turn on Summarization and specify configuration
"summarization": True,
"summary_model": "informative",
"summary_type": "bullets",
# Turn on Entity Detection
"entity_detection": True,}
response = requests.post(
transcript_endpoint,
json=json,
headers=headers # Authorization to link this transcription with your account
)
polling_endpoint = f"https://api.assemblyai.com/v2/transcript/{response.json()['id']}"
while True:
transcription_result = requests.get(polling_endpoint, headers=headers).json()
if transcription_result['status'] == 'completed':
break
elif transcription_result['status'] == 'error':
raise RuntimeError(f"Transcription failed: {transcription_result['error']}")
else:
time.sleep(3)
res = transcription_result['sentiment_analysis_results']
sentiment_analysis_result = ''
df = pd.DataFrame(res)
df = df.loc[:, ["text", "sentiment", "confidence"]]
topic = transcription_result['iab_categories_result']['summary']
topics = []
for k in topic:
topic_dict = {}
topic_dict["Topic"] = " > ".join(k.split(">"))
topic_dict["Relevance"] = topic[k]
topics.append(topic_dict)
df_topic = pd.DataFrame(topics)
return transcription_result['text'], transcription_result['summary'], df, df_topic.head()
# def get_transcript_file(filename):
# upload_response = requests.post(
# upload_endpoint,
# headers=headers,
# data=_read_file(filename))
# # JSON that tells the API which file to trancsribe
# json = {
# # URL of the audio file to process
# "audio_url": upload_response.json()['upload_url'],
# # Turn on speaker labels
# "speaker_labels": True,
# # Turn on custom vocabulary
# "word_boost": ["assembly ai"],
# # Turn on custom spelling
# "custom_spelling": [
# {"from": ["assembly AI"], "to": "AssemblyAI"},
# {"from": ["assembly AI's"], "to": "AssemblyAI's"}
# ],
# # Turn on PII Redaction and specify policies
# "redact_pii": True,
# "redact_pii_policies": ["drug", "injury", "person_name"],
# "redact_pii_audio": True,
# # Turn on Auto Highlights
# "auto_highlights": True,
# # Turn on Content Moderation
# "content_safety": True,
# # Turn on Topic Detection
# "iab_categories": True,
# # Turn on Sentiment Analysis
# "sentiment_analysis": True,
# # Turn on Summarization and specify configuration
# "summarization": True,
# "summary_model": "informative",
# "summary_type": "bullets",
# # Turn on Entity Detection
# "entity_detection": True,
# }
# response = requests.post(
# transcript_endpoint,
# json=json,
# headers=headers # Authorization to link this transcription with your account
# )
# polling_endpoint = f"https://api.assemblyai.com/v2/transcript/{response.json()['id']}"
# while True:
# transcription_result = requests.get(polling_endpoint, headers=headers).json()
# if transcription_result['status'] == 'completed':
# break
# elif transcription_result['status'] == 'error':
# raise RuntimeError(f"Transcription failed: {transcription_result['error']}")
# else:
# time.sleep(3)
# return transcription_result['text']
audio_intelligence_list = [
"Summarization",
"Sentiment Analysis"
]
title = """<h1 align="center">🔥Conformer-1 API </h1>"""
description = """
### In this demo, you can explore the outputs of a Conformer-1 Speech Recognition Model from AssemblyAI.
"""
with gr.Blocks() as demo:
gr.HTML(title)
gr.Markdown(description)
with gr.Column(elem_id = "col_container"):
#audio_intelligence_options = gr.CheckboxGroup(audio_intelligence_list, label="Audio Intelligence Options")
inputs = gr.Audio(source = "upload",label = "Upload the input Audio file")
b1 = gr.Button('Process Audio')
with gr.Tabs():
with gr.TabItem('Transcript') as transcript_tab:
transcript = gr.Textbox(label = "Transcript Result" )
with gr.TabItem('Summary', visible = False) as summary_tab:
summary = gr.Textbox(label = "Summary Result")
with gr.TabItem('Sentiment Analysis', visible = False) as sentiment_tab:
sentiment_analysis = gr.Dataframe(label = "Sentiment Analysis Result" )
with gr.TabItem('Topic Detection', visible = False) as topic_detection_tab:
topic_detection = gr.Dataframe(label = "Topic Detection Result" )
b1.click(get_transcript_url, [inputs], [transcript, summary, sentiment_analysis,topic_detection])
examples = gr.Examples(examples = [["audio.mp3"]], inputs = inputs, outputs=[transcript, summary, sentiment_analysis, topic_detection], cache_examples = True, fn = get_transcript_url)
demo.queue().launch(debug=True)
|