conformer-asr / app.py
RamAnanth1's picture
Update app.py
9c296b9
raw
history blame
7.56 kB
import gradio as gr
import os
import json
import requests
import time
import pandas as pd
import io
from scipy.io.wavfile import write
# AssemblyAI transcript endpoint (where we submit the file)
transcript_endpoint = "https://api.assemblyai.com/v2/transcript"
upload_endpoint = "https://api.assemblyai.com/v2/upload"
headers={
"Authorization": os.environ["ASSEMBLYAI_KEY"],
"Content-Type": "application/json"
}
# Helper function to upload data
def _read_file(filename, chunk_size=5242880):
with open(filename, "rb") as f:
while True:
data = f.read(chunk_size)
if not data:
break
yield data
def _read_array(audio, chunk_size=5242880):
"""Like _read_file but for array - creates temporary unsaved "file" from sample rate and audio np.array"""
sr, aud = audio
# Create temporary "file" and write data to it
bytes_wav = bytes()
temp_file = io.BytesIO(bytes_wav)
write(temp_file, sr, aud)
while True:
data = temp_file.read(chunk_size)
if not data:
break
yield data
def get_audio_from_upload(audio):
upload_response = requests.post(
upload_endpoint,
headers=headers,
data=_read_array(audio))
print(upload_response.json())
return
def get_transcript_url(url):
# JSON that tells the API which file to trancsribe
json={
# URL of the audio file to process
"audio_url": url,
# Turn on speaker labels
"speaker_labels": True,
# Turn on cusom vocabulary
"word_boost": ["assembly ai"],
# Turn on custom spelling
"custom_spelling": [
{"from": ["assembly AI"], "to": "AssemblyAI"},
{"from": ["assembly AI's"], "to": "AssemblyAI's"}
],
# Turn on PII Redaction and specify policies
"redact_pii": True,
"redact_pii_policies": ["drug", "injury", "person_name"],
"redact_pii_audio": True,
# Turn on Auto Highlights
"auto_highlights": True,
# Turn on Content Moderation
"content_safety": True,
# Turn on Topic Detection
"iab_categories": True,
# Turn on Sentiment Analysis
"sentiment_analysis": True,
# Turn on Summarization and specify configuration
"summarization": True,
"summary_model": "informative",
"summary_type": "bullets",
# Turn on Entity Detection
"entity_detection": True,}
response = requests.post(
transcript_endpoint,
json=json,
headers=headers # Authorization to link this transcription with your account
)
polling_endpoint = f"https://api.assemblyai.com/v2/transcript/{response.json()['id']}"
while True:
transcription_result = requests.get(polling_endpoint, headers=headers).json()
if transcription_result['status'] == 'completed':
break
elif transcription_result['status'] == 'error':
raise RuntimeError(f"Transcription failed: {transcription_result['error']}")
else:
time.sleep(3)
res = transcription_result['sentiment_analysis_results']
sentiment_analysis_result = ''
df = pd.DataFrame(res)
df = df.loc[:, ["text", "sentiment", "confidence"]]
topic = transcription_result['iab_categories_result']['summary']
topics = []
for k in topic:
topic_dict = {}
topic_dict["Topic"] = " > ".join(k.split(">"))
topic_dict["Relevance"] = topic[k]
topics.append(topic_dict)
df_topic = pd.DataFrame(topics)
return transcription_result['text'], transcription_result['summary'], df, df_topic.head()
# def get_transcript_file(filename):
# upload_response = requests.post(
# upload_endpoint,
# headers=headers,
# data=_read_file(filename))
# # JSON that tells the API which file to trancsribe
# json = {
# # URL of the audio file to process
# "audio_url": upload_response.json()['upload_url'],
# # Turn on speaker labels
# "speaker_labels": True,
# # Turn on custom vocabulary
# "word_boost": ["assembly ai"],
# # Turn on custom spelling
# "custom_spelling": [
# {"from": ["assembly AI"], "to": "AssemblyAI"},
# {"from": ["assembly AI's"], "to": "AssemblyAI's"}
# ],
# # Turn on PII Redaction and specify policies
# "redact_pii": True,
# "redact_pii_policies": ["drug", "injury", "person_name"],
# "redact_pii_audio": True,
# # Turn on Auto Highlights
# "auto_highlights": True,
# # Turn on Content Moderation
# "content_safety": True,
# # Turn on Topic Detection
# "iab_categories": True,
# # Turn on Sentiment Analysis
# "sentiment_analysis": True,
# # Turn on Summarization and specify configuration
# "summarization": True,
# "summary_model": "informative",
# "summary_type": "bullets",
# # Turn on Entity Detection
# "entity_detection": True,
# }
# response = requests.post(
# transcript_endpoint,
# json=json,
# headers=headers # Authorization to link this transcription with your account
# )
# polling_endpoint = f"https://api.assemblyai.com/v2/transcript/{response.json()['id']}"
# while True:
# transcription_result = requests.get(polling_endpoint, headers=headers).json()
# if transcription_result['status'] == 'completed':
# break
# elif transcription_result['status'] == 'error':
# raise RuntimeError(f"Transcription failed: {transcription_result['error']}")
# else:
# time.sleep(3)
# return transcription_result['text']
audio_intelligence_list = [
"Summarization",
"Sentiment Analysis"
]
title = """<h1 align="center">🔥Conformer-1 API </h1>"""
description = """
### In this demo, you can explore the outputs of a Conformer-1 Speech Recognition Model from AssemblyAI.
"""
with gr.Blocks() as demo:
gr.HTML(title)
gr.Markdown(description)
with gr.Column(elem_id = "col_container"):
inputs = gr.Textbox(label = "Enter the url for the audio file")
#audio_intelligence_options = gr.CheckboxGroup(audio_intelligence_list, label="Audio Intelligence Options")
audio_input = gr.Audio(source = "upload",label = "Input Audio")
b1 = gr.Button('Process Audio')
b2 = gr.Button("Upload Audio")
with gr.Tabs():
with gr.TabItem('Transcript') as transcript_tab:
transcript = gr.Textbox(label = "Transcript Result" )
with gr.TabItem('Summary', visible = False) as summary_tab:
summary = gr.Textbox(label = "Summary Result")
with gr.TabItem('Sentiment Analysis', visible = False) as sentiment_tab:
sentiment_analysis = gr.Dataframe(label = "Sentiment Analysis Result" )
with gr.TabItem('Topic Detection', visible = False) as topic_detection_tab:
topic_detection = gr.Dataframe(label = "Topic Detection Result" )
inputs.submit(get_transcript_url, [inputs], [transcript, summary, sentiment_analysis, topic_detection])
b1.click(get_transcript_url, [inputs], [transcript, summary, sentiment_analysis,topic_detection])
b2.click(get_audio_from_upload, audio_input)
#examples = gr.Examples(examples = [["https://github.com/AssemblyAI-Examples/assemblyai-and-python-in-5-minutes/blob/main/audio.mp3?raw=true"]], inputs = inputs, outputs=[transcript, summary, sentiment_analysis, topic_detection], cache_examples = True, fn = get_transcript_url)
demo.queue().launch(debug=True)