Spaces:
Sleeping
Sleeping
File size: 8,567 Bytes
d23d4b7 c99a000 d23d4b7 c99a000 d23d4b7 c99a000 e5fbe97 c99a000 20928cb d23d4b7 20928cb d23d4b7 af3e036 d23d4b7 af3e036 e5fbe97 b92c307 e5fbe97 af3e036 e5fbe97 b92c307 e5fbe97 af3e036 e5fbe97 af3e036 e5fbe97 af3e036 e5fbe97 af3e036 e5fbe97 d23d4b7 e5fbe97 af3e036 e5fbe97 af3e036 e5fbe97 af3e036 e5fbe97 af3e036 f6cf0c4 d23d4b7 af3e036 e5fbe97 af3e036 d23d4b7 af3e036 f6cf0c4 e5fbe97 af3e036 d23d4b7 af3e036 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import os
from PIL import Image, ImageOps
import matplotlib.pyplot as plt
import numpy as np
import torch
import requests
from tqdm import tqdm
from diffusers import StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline
import torchvision.transforms as T
from utils import preprocess,prepare_mask_and_masked_image, recover_image
to_pil = T.ToPILImage()
model_id_or_path = "runwayml/stable-diffusion-v1-5"
# model_id_or_path = "CompVis/stable-diffusion-v1-4"
# model_id_or_path = "CompVis/stable-diffusion-v1-3"
# model_id_or_path = "CompVis/stable-diffusion-v1-2"
# model_id_or_path = "CompVis/stable-diffusion-v1-1"
pipe_img2img = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id_or_path,
revision="fp16",
torch_dtype=torch.float16,
)
pipe_img2img = pipe_img2img.to("cuda")
# pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
# "runwayml/stable-diffusion-inpainting",
# revision="fp16",
# torch_dtype=torch.float16,
# )
# pipe_inpaint = pipe_inpaint.to("cuda")
def pgd(X, model, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None):
X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda()
pbar = tqdm(range(iters))
for i in pbar:
actual_step_size = step_size - (step_size - step_size / 100) / iters * i
X_adv.requires_grad_(True)
loss = (model(X_adv).latent_dist.mean).norm()
pbar.set_description(f"[Running attack]: Loss {loss.item():.5f} | step size: {actual_step_size:.4}")
grad, = torch.autograd.grad(loss, [X_adv])
X_adv = X_adv - grad.detach().sign() * actual_step_size
X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps)
X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max)
X_adv.grad = None
if mask is not None:
X_adv.data *= mask
return X_adv
def process_image_img2img(raw_image,prompt):
resize = T.transforms.Resize(512)
center_crop = T.transforms.CenterCrop(512)
init_image = center_crop(resize(raw_image))
with torch.autocast('cuda'):
X = preprocess(init_image).half().cuda()
adv_X = pgd(X,
model=pipe_img2img.vae.encode,
clamp_min=-1,
clamp_max=1,
eps=0.06, # The higher, the less imperceptible the attack is
step_size=0.02, # Set smaller than eps
iters=100, # The higher, the stronger your attack will be
)
# convert pixels back to [0,1] range
adv_X = (adv_X / 2 + 0.5).clamp(0, 1)
adv_image = to_pil(adv_X[0]).convert("RGB")
# a good seed (uncomment the line below to generate new images)
SEED = 9222
# SEED = np.random.randint(low=0, high=10000)
# Play with these for improving generated image quality
STRENGTH = 0.5
GUIDANCE = 7.5
NUM_STEPS = 50
with torch.autocast('cuda'):
torch.manual_seed(SEED)
image_nat = pipe_img2img(prompt=prompt, image=init_image, strength=STRENGTH, guidance_scale=GUIDANCE, num_inference_steps=NUM_STEPS).images[0]
torch.manual_seed(SEED)
image_adv = pipe_img2img(prompt=prompt, image=adv_image, strength=STRENGTH, guidance_scale=GUIDANCE, num_inference_steps=NUM_STEPS).images[0]
return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")]
# def process_image_inpaint(raw_image,mask, prompt):
# init_image = raw_image.convert('RGB').resize((512,512))
# mask_image = mask.convert('RGB')
# mask_image = ImageOps.invert(mask_image).resize((512,512))
# # Attack using embedding of random image from internet
# target_url = "https://bostonglobe-prod.cdn.arcpublishing.com/resizer/2-ZvyQ3aRNl_VNo7ja51BM5-Kpk=/960x0/cloudfront-us-east-1.images.arcpublishing.com/bostonglobe/CZOXE32LQQX5UNAB42AOA3SUY4.jpg"
# response = requests.get(target_url)
# target_image = Image.open(BytesIO(response.content)).convert("RGB")
# target_image = target_image.resize((512, 512))
# with torch.autocast('cuda'):
# mask, X = prepare_mask_and_masked_image(init_image, mask_image)
# X = X.half().cuda()
# mask = mask.half().cuda()
# # Here we attack towards the embedding of a random target image. You can also simply attack towards an embedding of zeros!
# target = pipe_inpaint.vae.encode(preprocess(target_image).half().cuda()).latent_dist.mean
# adv_X = pgd(X,
# target = target,
# model=pipe_inpaint.vae.encode,
# criterion=torch.nn.MSELoss(),
# clamp_min=-1,
# clamp_max=1,
# eps=0.06,
# step_size=0.01,
# iters=1000,
# mask=1-mask
# )
# adv_X = (adv_X / 2 + 0.5).clamp(0, 1)
# adv_image = to_pil(adv_X[0]).convert("RGB")
# adv_image = recover_image(adv_image, init_image, mask_image, background=True)
# # A good seed
# SEED = 9209
# # Uncomment the below to generated other images
# # SEED = np.random.randint(low=0, high=100000)
# torch.manual_seed(SEED)
# print(SEED)
# strength = 0.7
# guidance_scale = 7.5
# num_inference_steps = 100
# image_nat = pipe_inpaint(prompt=prompt,
# image=init_image,
# mask_image=mask_image,
# eta=1,
# num_inference_steps=num_inference_steps,
# guidance_scale=guidance_scale,
# strength=strength
# ).images[0]
# image_nat = recover_image(image_nat, init_image, mask_image)
# torch.manual_seed(SEED)
# image_adv = pipe_inpaint(prompt=prompt,
# image=adv_image,
# mask_image=mask_image,
# eta=1,
# num_inference_steps=num_inference_steps,
# guidance_scale=guidance_scale,
# strength=strength
# ).images[0]
# image_adv = recover_image(image_adv, init_image, mask_image)
# return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")]
examples_list = [["dog.png", "dog under heavy rain and muddy ground real"]]
with gr.Blocks() as demo:
gr.Markdown("""
## Interactive demo: Raising the Cost of Malicious AI-Powered Image Editing
""")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">This is an unofficial demo for Photoguard, which is an approach to safe-guarding images against manipulation by ML-powerd photo-editing models such as stable diffusion through immunization of images. The demo is based on the <a href='https://github.com/MadryLab/photoguard' style='text-decoration: underline;' target='_blank'> Github </a> implementation provided by the authors.</p>
''')
with gr.Column():
with gr.Tab("Simple Image to Image"):
input_image_img2img = gr.Image(type="pil", label = "Source Image")
input_prompt_img2img = gr.Textbox(label="Prompt")
run_btn_img2img = gr.Button('Run')
# with gr.Tab("Simple Inpainting"):
# input_image_inpaint = gr.Image(type="pil", label = "Source Image")
# mask_image_inpaint = gr.Image(type="pil", label = "Mask")
# input_prompt_inpaint = gr.Textbox(label="Prompt")
# run_btn_inpaint = gr.Button('Run')
with gr.Row():
result_gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
run_btn_img2img.click(process_image_img2img, inputs = [input_image_img2img,input_prompt_img2img], outputs = [result_gallery])
examples = gr.Examples(examples=examples_list,inputs = [input_image_img2img,input_prompt_img2img], outputs = [result_gallery], cache_examples = True, fn = process_image_img2img)
# run_btn_inpaint.click(process_image_inpaint, inputs = [input_image_inpaint,mask_image_inpaint,input_prompt_inpaint], outputs = [result_gallery])
demo.launch(debug=True) |