File size: 56,788 Bytes
0b293de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
import torch
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
import os
from langchain.agents.initialize import initialize_agent
from langchain.agents.tools import Tool
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.llms.openai import OpenAI
import re
import uuid
from diffusers import StableDiffusionInpaintPipeline
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
import cv2
import einops
from pytorch_lightning import seed_everything
import random
from ldm.util import instantiate_from_config
from ControlNet.cldm.model import create_model, load_state_dict
from ControlNet.cldm.ddim_hacked import DDIMSampler
from ControlNet.annotator.canny import CannyDetector
from ControlNet.annotator.mlsd import MLSDdetector
from ControlNet.annotator.util import HWC3, resize_image
from ControlNet.annotator.hed import HEDdetector, nms
from ControlNet.annotator.openpose import OpenposeDetector
from ControlNet.annotator.uniformer import UniformerDetector
from ControlNet.annotator.midas import MidasDetector

VISUAL_CHATGPT_PREFIX = """Visual ChatGPT is designed to be able to assist with a wide range of text and visual related tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. Visual ChatGPT is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.

Visual ChatGPT is able to process and understand large amounts of text and images. As a language model, Visual ChatGPT can not directly read images, but it has a list of tools to finish different visual tasks. Each image will have a file name formed as "image/xxx.png", and Visual ChatGPT can invoke different tools to indirectly understand pictures. When talking about images, Visual ChatGPT is very strict to the file name and will never fabricate nonexistent files. When using tools to generate new image files, Visual ChatGPT is also known that the image may not be the same as the user's demand, and will use other visual question answering tools or description tools to observe the real image. Visual ChatGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the image content and image file name. It will remember to provide the file name from the last tool observation, if a new image is generated.

Human may provide new figures to Visual ChatGPT with a description. The description helps Visual ChatGPT to understand this image, but Visual ChatGPT should use tools to finish following tasks, rather than directly imagine from the description.

Overall, Visual ChatGPT is a powerful visual dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. 


TOOLS:
------

Visual ChatGPT  has access to the following tools:"""

VISUAL_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format:

```
Thought: Do I need to use a tool? Yes
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
```

When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:

```
Thought: Do I need to use a tool? No
{ai_prefix}: [your response here]
```
"""

VISUAL_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if it does not exist.
You will remember to provide the image file name loyally if it's provided in the last tool observation.

Begin!

Previous conversation history:
{chat_history}

New input: {input}
Since Visual ChatGPT is a text language model, Visual ChatGPT must use tools to observe images rather than imagination.
The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human. 
Thought: Do I need to use a tool? {agent_scratchpad}"""

def cut_dialogue_history(history_memory, keep_last_n_words=500):
    tokens = history_memory.split()
    n_tokens = len(tokens)
    print(f"hitory_memory:{history_memory}, n_tokens: {n_tokens}")
    if n_tokens < keep_last_n_words:
        return history_memory
    else:
        paragraphs = history_memory.split('\n')
        last_n_tokens = n_tokens
        while last_n_tokens >= keep_last_n_words:
            last_n_tokens = last_n_tokens - len(paragraphs[0].split(' '))
            paragraphs = paragraphs[1:]
        return '\n' + '\n'.join(paragraphs)

def get_new_image_name(org_img_name, func_name="update"):
    head_tail = os.path.split(org_img_name)
    head = head_tail[0]
    tail = head_tail[1]
    name_split = tail.split('.')[0].split('_')
    this_new_uuid = str(uuid.uuid4())[0:4]
    if len(name_split) == 1:
        most_org_file_name = name_split[0]
        recent_prev_file_name = name_split[0]
        new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
    else:
        assert len(name_split) == 4
        most_org_file_name = name_split[3]
        recent_prev_file_name = name_split[0]
        new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
    return os.path.join(head, new_file_name)

def create_model(config_path, device):
    config = OmegaConf.load(config_path)
    OmegaConf.update(config, "model.params.cond_stage_config.params.device", device)
    model = instantiate_from_config(config.model).cpu()
    print(f'Loaded model config from [{config_path}]')
    return model

class MaskFormer:
    def __init__(self, device):
        self.device = device
        self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
        self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)

    def inference(self, image_path, text):
        threshold = 0.5
        min_area = 0.02
        padding = 20
        original_image = Image.open(image_path)
        image = original_image.resize((512, 512))
        inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt",).to(self.device)
        with torch.no_grad():
            outputs = self.model(**inputs)
        mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
        area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
        if area_ratio < min_area:
            return None
        true_indices = np.argwhere(mask)
        mask_array = np.zeros_like(mask, dtype=bool)
        for idx in true_indices:
            padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
            mask_array[padded_slice] = True
        visual_mask = (mask_array * 255).astype(np.uint8)
        image_mask = Image.fromarray(visual_mask)
        return image_mask.resize(image.size)

class ImageEditing:
    def __init__(self, device):
        print("Initializing StableDiffusionInpaint to %s" % device)
        self.device = device
        self.mask_former = MaskFormer(device=self.device)
        self.inpainting = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting",).to(device)

    def remove_part_of_image(self, input):
        image_path, to_be_removed_txt = input.split(",")
        print(f'remove_part_of_image: to_be_removed {to_be_removed_txt}')
        return self.replace_part_of_image(f"{image_path},{to_be_removed_txt},background")

    def replace_part_of_image(self, input):
        image_path, to_be_replaced_txt, replace_with_txt = input.split(",")
        print(f'replace_part_of_image: replace_with_txt {replace_with_txt}')
        original_image = Image.open(image_path)
        mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
        updated_image = self.inpainting(prompt=replace_with_txt, image=original_image, mask_image=mask_image).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="replace-something")
        updated_image.save(updated_image_path)
        return updated_image_path

class Pix2Pix:
    def __init__(self, device):
        print("Initializing Pix2Pix to %s" % device)
        self.device = device
        self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None).to(device)
        self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)

    def inference(self, inputs):
        """Change style of image."""
        print("===>Starting Pix2Pix Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        original_image = Image.open(image_path)
        image = self.pipe(instruct_text,image=original_image,num_inference_steps=40,image_guidance_scale=1.2,).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
        image.save(updated_image_path)
        return updated_image_path

class T2I:
    def __init__(self, device):
        print("Initializing T2I to %s" % device)
        self.device = device
        self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
        self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
        self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
        self.pipe.to(device)

    def inference(self, text):
        image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
        refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
        print(f'{text} refined to {refined_text}')
        image = self.pipe(refined_text).images[0]
        image.save(image_filename)
        print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
        return image_filename

class ImageCaptioning:
    def __init__(self, device):
        print("Initializing ImageCaptioning to %s" % device)
        self.device = device
        self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
        self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)

    def inference(self, image_path):
        inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
        out = self.model.generate(**inputs)
        captions = self.processor.decode(out[0], skip_special_tokens=True)
        return captions

class image2canny:
    def __init__(self):
        print("Direct detect canny.")
        self.detector = CannyDetector()
        self.low_thresh = 100
        self.high_thresh = 200

    def inference(self, inputs):
        print("===>Starting image2canny Inference")
        image = Image.open(inputs)
        image = np.array(image)
        canny = self.detector(image, self.low_thresh, self.high_thresh)
        canny = 255 - canny
        image = Image.fromarray(canny)
        updated_image_path = get_new_image_name(inputs, func_name="edge")
        image.save(updated_image_path)
        return updated_image_path

class canny2image:
    def __init__(self, device):
        print("Initialize the canny2image model.")
        model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
        model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_canny.pth', location='cpu'))
        self.model = model.to(device)
        self.device = device
        self.ddim_sampler = DDIMSampler(self.model)
        self.ddim_steps = 20
        self.image_resolution = 512
        self.num_samples = 1
        self.save_memory = False
        self.strength = 1.0
        self.guess_mode = False
        self.scale = 9.0
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting canny2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        image = np.array(image)
        image = 255 - image
        prompt = instruct_text
        img = resize_image(HWC3(image), self.image_resolution)
        H, W, C = img.shape
        control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
        control = torch.stack([control for _ in range(self.num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
        un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
        shape = (4, H // 8, W // 8)
        self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)  # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
        samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        x_samples = self.model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
        updated_image_path = get_new_image_name(image_path, func_name="canny2image")
        real_image = Image.fromarray(x_samples[0])  # get default the index0 image
        real_image.save(updated_image_path)
        return updated_image_path

class image2line:
    def __init__(self):
        print("Direct detect straight line...")
        self.detector = MLSDdetector()
        self.value_thresh = 0.1
        self.dis_thresh = 0.1
        self.resolution = 512

    def inference(self, inputs):
        print("===>Starting image2hough Inference")
        image = Image.open(inputs)
        image = np.array(image)
        image = HWC3(image)
        hough = self.detector(resize_image(image, self.resolution), self.value_thresh, self.dis_thresh)
        updated_image_path = get_new_image_name(inputs, func_name="line-of")
        hough = 255 - cv2.dilate(hough, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
        image = Image.fromarray(hough)
        image.save(updated_image_path)
        return updated_image_path


class line2image:
    def __init__(self, device):
        print("Initialize the line2image model...")
        model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
        model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_mlsd.pth', location='cpu'))
        self.model = model.to(device)
        self.device = device
        self.ddim_sampler = DDIMSampler(self.model)
        self.ddim_steps = 20
        self.image_resolution = 512
        self.num_samples = 1
        self.save_memory = False
        self.strength = 1.0
        self.guess_mode = False
        self.scale = 9.0
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting line2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        image = np.array(image)
        image = 255 - image
        prompt = instruct_text
        img = resize_image(HWC3(image), self.image_resolution)
        H, W, C = img.shape
        img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
        control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
        control = torch.stack([control for _ in range(self.num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
        un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
        shape = (4, H // 8, W // 8)
        self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)  # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
        samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        x_samples = self.model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).\
            cpu().numpy().clip(0,255).astype(np.uint8)
        updated_image_path = get_new_image_name(image_path, func_name="line2image")
        real_image = Image.fromarray(x_samples[0])  # default the index0 image
        real_image.save(updated_image_path)
        return updated_image_path


class image2hed:
    def __init__(self):
        print("Direct detect soft HED boundary...")
        self.detector = HEDdetector()
        self.resolution = 512

    def inference(self, inputs):
        print("===>Starting image2hed Inference")
        image = Image.open(inputs)
        image = np.array(image)
        image = HWC3(image)
        hed = self.detector(resize_image(image, self.resolution))
        updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
        image = Image.fromarray(hed)
        image.save(updated_image_path)
        return updated_image_path


class hed2image:
    def __init__(self, device):
        print("Initialize the hed2image model...")
        model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
        model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_hed.pth', location='cpu'))
        self.model = model.to(device)
        self.device = device
        self.ddim_sampler = DDIMSampler(self.model)
        self.ddim_steps = 20
        self.image_resolution = 512
        self.num_samples = 1
        self.save_memory = False
        self.strength = 1.0
        self.guess_mode = False
        self.scale = 9.0
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting hed2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        image = np.array(image)
        prompt = instruct_text
        img = resize_image(HWC3(image), self.image_resolution)
        H, W, C = img.shape
        img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
        control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
        control = torch.stack([control for _ in range(self.num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
        un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
        shape = (4, H // 8, W // 8)
        self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
        samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        x_samples = self.model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
        updated_image_path = get_new_image_name(image_path, func_name="hed2image")
        real_image = Image.fromarray(x_samples[0])  # default the index0 image
        real_image.save(updated_image_path)
        return updated_image_path

class image2scribble:
    def __init__(self):
        print("Direct detect scribble.")
        self.detector = HEDdetector()
        self.resolution = 512

    def inference(self, inputs):
        print("===>Starting image2scribble Inference")
        image = Image.open(inputs)
        image = np.array(image)
        image = HWC3(image)
        detected_map = self.detector(resize_image(image, self.resolution))
        detected_map = HWC3(detected_map)
        image = resize_image(image, self.resolution)
        H, W, C = image.shape
        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
        detected_map = nms(detected_map, 127, 3.0)
        detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
        detected_map[detected_map > 4] = 255
        detected_map[detected_map < 255] = 0
        detected_map = 255 - detected_map
        updated_image_path = get_new_image_name(inputs, func_name="scribble")
        image = Image.fromarray(detected_map)
        image.save(updated_image_path)
        return updated_image_path

class scribble2image:
    def __init__(self, device):
        print("Initialize the scribble2image model...")
        model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
        model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_scribble.pth', location='cpu'))
        self.model = model.to(device)
        self.device = device
        self.ddim_sampler = DDIMSampler(self.model)
        self.ddim_steps = 20
        self.image_resolution = 512
        self.num_samples = 1
        self.save_memory = False
        self.strength = 1.0
        self.guess_mode = False
        self.scale = 9.0
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting scribble2image Inference")
        print(f'sketch device {self.device}')
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        image = np.array(image)
        prompt = instruct_text
        image = 255 - image
        img = resize_image(HWC3(image), self.image_resolution)
        H, W, C = img.shape
        img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
        control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
        control = torch.stack([control for _ in range(self.num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
        un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
        shape = (4, H // 8, W // 8)
        self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
        samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        x_samples = self.model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
        updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
        real_image = Image.fromarray(x_samples[0])  # default the index0 image
        real_image.save(updated_image_path)
        return updated_image_path

class image2pose:
    def __init__(self):
        print("Direct human pose.")
        self.detector = OpenposeDetector()
        self.resolution = 512

    def inference(self, inputs):
        print("===>Starting image2pose Inference")
        image = Image.open(inputs)
        image = np.array(image)
        image = HWC3(image)
        detected_map, _ = self.detector(resize_image(image, self.resolution))
        detected_map = HWC3(detected_map)
        image = resize_image(image, self.resolution)
        H, W, C = image.shape
        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
        updated_image_path = get_new_image_name(inputs, func_name="human-pose")
        image = Image.fromarray(detected_map)
        image.save(updated_image_path)
        return updated_image_path

class pose2image:
    def __init__(self, device):
        print("Initialize the pose2image model...")
        model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
        model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_openpose.pth', location='cpu'))
        self.model = model.to(device)
        self.device = device
        self.ddim_sampler = DDIMSampler(self.model)
        self.ddim_steps = 20
        self.image_resolution = 512
        self.num_samples = 1
        self.save_memory = False
        self.strength = 1.0
        self.guess_mode = False
        self.scale = 9.0
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting pose2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        image = np.array(image)
        prompt = instruct_text
        img = resize_image(HWC3(image), self.image_resolution)
        H, W, C = img.shape
        img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
        control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
        control = torch.stack([control for _ in range(self.num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
        un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
        shape = (4, H // 8, W // 8)
        self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
        samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        x_samples = self.model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
        updated_image_path = get_new_image_name(image_path, func_name="pose2image")
        real_image = Image.fromarray(x_samples[0])  # default the index0 image
        real_image.save(updated_image_path)
        return updated_image_path

class image2seg:
    def __init__(self):
        print("Direct segmentations.")
        self.detector = UniformerDetector()
        self.resolution = 512

    def inference(self, inputs):
        print("===>Starting image2seg Inference")
        image = Image.open(inputs)
        image = np.array(image)
        image = HWC3(image)
        detected_map = self.detector(resize_image(image, self.resolution))
        detected_map = HWC3(detected_map)
        image = resize_image(image, self.resolution)
        H, W, C = image.shape
        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
        updated_image_path = get_new_image_name(inputs, func_name="segmentation")
        image = Image.fromarray(detected_map)
        image.save(updated_image_path)
        return updated_image_path

class seg2image:
    def __init__(self, device):
        print("Initialize the seg2image model...")
        model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
        model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_seg.pth', location='cpu'))
        self.model = model.to(device)
        self.device = device
        self.ddim_sampler = DDIMSampler(self.model)
        self.ddim_steps = 20
        self.image_resolution = 512
        self.num_samples = 1
        self.save_memory = False
        self.strength = 1.0
        self.guess_mode = False
        self.scale = 9.0
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting seg2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        image = np.array(image)
        prompt = instruct_text
        img = resize_image(HWC3(image), self.image_resolution)
        H, W, C = img.shape
        img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
        control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
        control = torch.stack([control for _ in range(self.num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
        un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
        shape = (4, H // 8, W // 8)
        self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
        samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        x_samples = self.model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
        updated_image_path = get_new_image_name(image_path, func_name="segment2image")
        real_image = Image.fromarray(x_samples[0])  # default the index0 image
        real_image.save(updated_image_path)
        return updated_image_path

class image2depth:
    def __init__(self):
        print("Direct depth estimation.")
        self.detector = MidasDetector()
        self.resolution = 512

    def inference(self, inputs):
        print("===>Starting image2depth Inference")
        image = Image.open(inputs)
        image = np.array(image)
        image = HWC3(image)
        detected_map, _ = self.detector(resize_image(image, self.resolution))
        detected_map = HWC3(detected_map)
        image = resize_image(image, self.resolution)
        H, W, C = image.shape
        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
        updated_image_path = get_new_image_name(inputs, func_name="depth")
        image = Image.fromarray(detected_map)
        image.save(updated_image_path)
        return updated_image_path

class depth2image:
    def __init__(self, device):
        print("Initialize depth2image model...")
        model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
        model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_depth.pth', location='cpu'))
        self.model = model.to(device)
        self.device = device
        self.ddim_sampler = DDIMSampler(self.model)
        self.ddim_steps = 20
        self.image_resolution = 512
        self.num_samples = 1
        self.save_memory = False
        self.strength = 1.0
        self.guess_mode = False
        self.scale = 9.0
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting depth2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        image = np.array(image)
        prompt = instruct_text
        img = resize_image(HWC3(image), self.image_resolution)
        H, W, C = img.shape
        img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
        control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
        control = torch.stack([control for _ in range(self.num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
        un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
        shape = (4, H // 8, W // 8)
        self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)  # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
        samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        x_samples = self.model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
        updated_image_path = get_new_image_name(image_path, func_name="depth2image")
        real_image = Image.fromarray(x_samples[0])  # default the index0 image
        real_image.save(updated_image_path)
        return updated_image_path

class image2normal:
    def __init__(self):
        print("Direct normal estimation.")
        self.detector = MidasDetector()
        self.resolution = 512
        self.bg_threshold = 0.4

    def inference(self, inputs):
        print("===>Starting image2 normal Inference")
        image = Image.open(inputs)
        image = np.array(image)
        image = HWC3(image)
        _, detected_map = self.detector(resize_image(image, self.resolution), bg_th=self.bg_threshold)
        detected_map = HWC3(detected_map)
        image = resize_image(image, self.resolution)
        H, W, C = image.shape
        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
        updated_image_path = get_new_image_name(inputs, func_name="normal-map")
        image = Image.fromarray(detected_map)
        image.save(updated_image_path)
        return updated_image_path

class normal2image:
    def __init__(self, device):
        print("Initialize normal2image model...")
        model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
        model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_normal.pth', location='cpu'))
        self.model = model.to(device)
        self.device = device
        self.ddim_sampler = DDIMSampler(self.model)
        self.ddim_steps = 20
        self.image_resolution = 512
        self.num_samples = 1
        self.save_memory = False
        self.strength = 1.0
        self.guess_mode = False
        self.scale = 9.0
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting normal2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        image = np.array(image)
        prompt = instruct_text
        img = image[:, :, ::-1].copy()
        img = resize_image(HWC3(img), self.image_resolution)
        H, W, C = img.shape
        img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
        control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
        control = torch.stack([control for _ in range(self.num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
        un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
        shape = (4, H // 8, W // 8)
        self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
        samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
        if self.save_memory:
            self.model.low_vram_shift(is_diffusing=False)
        x_samples = self.model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
        updated_image_path = get_new_image_name(image_path, func_name="normal2image")
        real_image = Image.fromarray(x_samples[0])  # default the index0 image
        real_image.save(updated_image_path)
        return updated_image_path

class BLIPVQA:
    def __init__(self, device):
        print("Initializing BLIP VQA to %s" % device)
        self.device = device
        self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
        self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(self.device)

    def get_answer_from_question_and_image(self, inputs):
        image_path, question = inputs.split(",")
        raw_image = Image.open(image_path).convert('RGB')
        print(F'BLIPVQA :question :{question}')
        inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device)
        out = self.model.generate(**inputs)
        answer = self.processor.decode(out[0], skip_special_tokens=True)
        return answer

class ConversationBot:
    def __init__(self):
        print("Initializing VisualChatGPT")
        self.llm = OpenAI(temperature=0)
        self.edit = ImageEditing(device="cuda:6")
        self.i2t = ImageCaptioning(device="cuda:4")
        self.t2i = T2I(device="cuda:1")
        self.image2canny = image2canny()
        self.canny2image = canny2image(device="cuda:1")
        self.image2line = image2line()
        self.line2image = line2image(device="cuda:1")
        self.image2hed = image2hed()
        self.hed2image = hed2image(device="cuda:2")
        self.image2scribble = image2scribble()
        self.scribble2image = scribble2image(device="cuda:3")
        self.image2pose = image2pose()
        self.pose2image = pose2image(device="cuda:3")
        self.BLIPVQA = BLIPVQA(device="cuda:4")
        self.image2seg = image2seg()
        self.seg2image = seg2image(device="cuda:7")
        self.image2depth = image2depth()
        self.depth2image = depth2image(device="cuda:7")
        self.image2normal = image2normal()
        self.normal2image = normal2image(device="cuda:5")
        self.pix2pix = Pix2Pix(device="cuda:3")
        self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
        self.tools = [
            Tool(name="Get Photo Description", func=self.i2t.inference,
                 description="useful when you want to know what is inside the photo. receives image_path as input. "
                             "The input to this tool should be a string, representing the image_path. "),
            Tool(name="Generate Image From User Input Text", func=self.t2i.inference,
                 description="useful when you want to generate an image from a user input text and save it to a file. like: generate an image of an object or something, or generate an image that includes some objects. "
                             "The input to this tool should be a string, representing the text used to generate image. "),
            Tool(name="Remove Something From The Photo", func=self.edit.remove_part_of_image,
                 description="useful when you want to remove and object or something from the photo from its description or location. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the object need to be removed. "),
            Tool(name="Replace Something From The Photo", func=self.edit.replace_part_of_image,
                 description="useful when you want to replace an object from the object description or location with another object from its description. "
                             "The input to this tool should be a comma seperated string of three, representing the image_path, the object to be replaced, the object to be replaced with "),

            Tool(name="Instruct Image Using Text", func=self.pix2pix.inference,
                 description="useful when you want to the style of the image to be like the text. like: make it look like a painting. or make it like a robot. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the text. "),
            Tool(name="Answer Question About The Image", func=self.BLIPVQA.get_answer_from_question_and_image,
                 description="useful when you need an answer for a question based on an image. like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the question"),
            Tool(name="Edge Detection On Image", func=self.image2canny.inference,
                 description="useful when you want to detect the edge of the image. like: detect the edges of this image, or canny detection on image, or peform edge detection on this image, or detect the canny image of this image. "
                             "The input to this tool should be a string, representing the image_path"),
            Tool(name="Generate Image Condition On Canny Image", func=self.canny2image.inference,
                 description="useful when you want to generate a new real image from both the user desciption and a canny image. like: generate a real image of a object or something from this canny image, or generate a new real image of a object or something from this edge image. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the user description. "),
            Tool(name="Line Detection On Image", func=self.image2line.inference,
                 description="useful when you want to detect the straight line of the image. like: detect the straight lines of this image, or straight line detection on image, or peform straight line detection on this image, or detect the straight line image of this image. "
                             "The input to this tool should be a string, representing the image_path"),
            Tool(name="Generate Image Condition On Line Image", func=self.line2image.inference,
                 description="useful when you want to generate a new real image from both the user desciption and a straight line image. like: generate a real image of a object or something from this straight line image, or generate a new real image of a object or something from this straight lines. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the user description. "),
            Tool(name="Hed Detection On Image", func=self.image2hed.inference,
                 description="useful when you want to detect the soft hed boundary of the image. like: detect the soft hed boundary of this image, or hed boundary detection on image, or peform hed boundary detection on this image, or detect soft hed boundary image of this image. "
                             "The input to this tool should be a string, representing the image_path"),
            Tool(name="Generate Image Condition On Soft Hed Boundary Image", func=self.hed2image.inference,
                 description="useful when you want to generate a new real image from both the user desciption and a soft hed boundary image. like: generate a real image of a object or something from this soft hed boundary image, or generate a new real image of a object or something from this hed boundary. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
            Tool(name="Segmentation On Image", func=self.image2seg.inference,
                 description="useful when you want to detect segmentations of the image. like: segment this image, or generate segmentations on this image, or peform segmentation on this image. "
                             "The input to this tool should be a string, representing the image_path"),
            Tool(name="Generate Image Condition On Segmentations", func=self.seg2image.inference,
                 description="useful when you want to generate a new real image from both the user desciption and segmentations. like: generate a real image of a object or something from this segmentation image, or generate a new real image of a object or something from these segmentations. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
            Tool(name="Predict Depth On Image", func=self.image2depth.inference,
                 description="useful when you want to detect depth of the image. like: generate the depth from this image, or detect the depth map on this image, or predict the depth for this image. "
                             "The input to this tool should be a string, representing the image_path"),
            Tool(name="Generate Image Condition On Depth",  func=self.depth2image.inference,
                 description="useful when you want to generate a new real image from both the user desciption and depth image. like: generate a real image of a object or something from this depth image, or generate a new real image of a object or something from the depth map. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
            Tool(name="Predict Normal Map On Image", func=self.image2normal.inference,
                 description="useful when you want to detect norm map of the image. like: generate normal map from this image, or predict normal map of this image. "
                             "The input to this tool should be a string, representing the image_path"),
            Tool(name="Generate Image Condition On Normal Map", func=self.normal2image.inference,
                 description="useful when you want to generate a new real image from both the user desciption and normal map. like: generate a real image of a object or something from this normal map, or generate a new real image of a object or something from the normal map. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
            Tool(name="Sketch Detection On Image", func=self.image2scribble.inference,
                 description="useful when you want to generate a scribble of the image. like: generate a scribble of this image, or generate a sketch from this image, detect the sketch from this image. "
                             "The input to this tool should be a string, representing the image_path"),
            Tool(name="Generate Image Condition On Sketch Image", func=self.scribble2image.inference,
                 description="useful when you want to generate a new real image from both the user desciption and a scribble image or a sketch image. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
            Tool(name="Pose Detection On Image", func=self.image2pose.inference,
                 description="useful when you want to detect the human pose of the image. like: generate human poses of this image, or generate a pose image from this image. "
                             "The input to this tool should be a string, representing the image_path"),
            Tool(name="Generate Image Condition On Pose Image", func=self.pose2image.inference,
                 description="useful when you want to generate a new real image from both the user desciption and a human pose image. like: generate a real image of a human from this human pose image, or generate a new real image of a human from this pose. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the user description")]
        self.agent = initialize_agent(
            self.tools,
            self.llm,
            agent="conversational-react-description",
            verbose=True,
            memory=self.memory,
            return_intermediate_steps=True,
            agent_kwargs={'prefix': VISUAL_CHATGPT_PREFIX, 'format_instructions': VISUAL_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': VISUAL_CHATGPT_SUFFIX}, )

    def run_text(self, text, state):
        print("===============Running run_text =============")
        print("Inputs:", text, state)
        print("======>Previous memory:\n %s" % self.agent.memory)
        self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
        res = self.agent({"input": text})
        print("======>Current memory:\n %s" % self.agent.memory)
        response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
        state = state + [(text, response)]
        print("Outputs:", state)
        return state, state

    def run_image(self, image, state, txt):
        print("===============Running run_image =============")
        print("Inputs:", image, state)
        print("======>Previous memory:\n %s" % self.agent.memory)
        image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
        print("======>Auto Resize Image...")
        img = Image.open(image.name)
        width, height = img.size
        ratio = min(512 / width, 512 / height)
        width_new, height_new = (round(width * ratio), round(height * ratio))
        img = img.resize((width_new, height_new))
        img = img.convert('RGB')
        img.save(image_filename, "PNG")
        print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
        description = self.i2t.inference(image_filename)
        Human_prompt = "\nHuman: provide a figure named {}. The description is: {}. This information helps you to understand this image, but you should use tools to finish following tasks, " \
                       "rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description)
        AI_prompt = "Received.  "
        self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
        print("======>Current memory:\n %s" % self.agent.memory)
        state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)]
        print("Outputs:", state)
        return state, state, txt + ' ' + image_filename + ' '


bot = ConversationBot()
with gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}") as demo:
    chatbot = gr.Chatbot(elem_id="chatbot", label="Visual ChatGPT")
    state = gr.State([])
    with gr.Row():
        with gr.Column(scale=0.7):
            txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
        with gr.Column(scale=0.15, min_width=0):
            clear = gr.Button("Clear️")
        with gr.Column(scale=0.15, min_width=0):
            btn = gr.UploadButton("Upload", file_types=["image"])

    txt.submit(bot.run_text, [txt, state], [chatbot, state])
    txt.submit(lambda: "", None, txt)
    btn.upload(bot.run_image, [btn, state, txt], [chatbot, state, txt])
    clear.click(bot.memory.clear)
    clear.click(lambda: [], None, chatbot)
    clear.click(lambda: [], None, state)
demo.launch()