Spaces:
Build error
Build error
File size: 56,788 Bytes
0b293de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 |
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
import torch
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
import os
from langchain.agents.initialize import initialize_agent
from langchain.agents.tools import Tool
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.llms.openai import OpenAI
import re
import uuid
from diffusers import StableDiffusionInpaintPipeline
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
import cv2
import einops
from pytorch_lightning import seed_everything
import random
from ldm.util import instantiate_from_config
from ControlNet.cldm.model import create_model, load_state_dict
from ControlNet.cldm.ddim_hacked import DDIMSampler
from ControlNet.annotator.canny import CannyDetector
from ControlNet.annotator.mlsd import MLSDdetector
from ControlNet.annotator.util import HWC3, resize_image
from ControlNet.annotator.hed import HEDdetector, nms
from ControlNet.annotator.openpose import OpenposeDetector
from ControlNet.annotator.uniformer import UniformerDetector
from ControlNet.annotator.midas import MidasDetector
VISUAL_CHATGPT_PREFIX = """Visual ChatGPT is designed to be able to assist with a wide range of text and visual related tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. Visual ChatGPT is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
Visual ChatGPT is able to process and understand large amounts of text and images. As a language model, Visual ChatGPT can not directly read images, but it has a list of tools to finish different visual tasks. Each image will have a file name formed as "image/xxx.png", and Visual ChatGPT can invoke different tools to indirectly understand pictures. When talking about images, Visual ChatGPT is very strict to the file name and will never fabricate nonexistent files. When using tools to generate new image files, Visual ChatGPT is also known that the image may not be the same as the user's demand, and will use other visual question answering tools or description tools to observe the real image. Visual ChatGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the image content and image file name. It will remember to provide the file name from the last tool observation, if a new image is generated.
Human may provide new figures to Visual ChatGPT with a description. The description helps Visual ChatGPT to understand this image, but Visual ChatGPT should use tools to finish following tasks, rather than directly imagine from the description.
Overall, Visual ChatGPT is a powerful visual dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics.
TOOLS:
------
Visual ChatGPT has access to the following tools:"""
VISUAL_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format:
```
Thought: Do I need to use a tool? Yes
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
```
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
```
Thought: Do I need to use a tool? No
{ai_prefix}: [your response here]
```
"""
VISUAL_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if it does not exist.
You will remember to provide the image file name loyally if it's provided in the last tool observation.
Begin!
Previous conversation history:
{chat_history}
New input: {input}
Since Visual ChatGPT is a text language model, Visual ChatGPT must use tools to observe images rather than imagination.
The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human.
Thought: Do I need to use a tool? {agent_scratchpad}"""
def cut_dialogue_history(history_memory, keep_last_n_words=500):
tokens = history_memory.split()
n_tokens = len(tokens)
print(f"hitory_memory:{history_memory}, n_tokens: {n_tokens}")
if n_tokens < keep_last_n_words:
return history_memory
else:
paragraphs = history_memory.split('\n')
last_n_tokens = n_tokens
while last_n_tokens >= keep_last_n_words:
last_n_tokens = last_n_tokens - len(paragraphs[0].split(' '))
paragraphs = paragraphs[1:]
return '\n' + '\n'.join(paragraphs)
def get_new_image_name(org_img_name, func_name="update"):
head_tail = os.path.split(org_img_name)
head = head_tail[0]
tail = head_tail[1]
name_split = tail.split('.')[0].split('_')
this_new_uuid = str(uuid.uuid4())[0:4]
if len(name_split) == 1:
most_org_file_name = name_split[0]
recent_prev_file_name = name_split[0]
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
else:
assert len(name_split) == 4
most_org_file_name = name_split[3]
recent_prev_file_name = name_split[0]
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
return os.path.join(head, new_file_name)
def create_model(config_path, device):
config = OmegaConf.load(config_path)
OmegaConf.update(config, "model.params.cond_stage_config.params.device", device)
model = instantiate_from_config(config.model).cpu()
print(f'Loaded model config from [{config_path}]')
return model
class MaskFormer:
def __init__(self, device):
self.device = device
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
def inference(self, image_path, text):
threshold = 0.5
min_area = 0.02
padding = 20
original_image = Image.open(image_path)
image = original_image.resize((512, 512))
inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt",).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
if area_ratio < min_area:
return None
true_indices = np.argwhere(mask)
mask_array = np.zeros_like(mask, dtype=bool)
for idx in true_indices:
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
mask_array[padded_slice] = True
visual_mask = (mask_array * 255).astype(np.uint8)
image_mask = Image.fromarray(visual_mask)
return image_mask.resize(image.size)
class ImageEditing:
def __init__(self, device):
print("Initializing StableDiffusionInpaint to %s" % device)
self.device = device
self.mask_former = MaskFormer(device=self.device)
self.inpainting = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting",).to(device)
def remove_part_of_image(self, input):
image_path, to_be_removed_txt = input.split(",")
print(f'remove_part_of_image: to_be_removed {to_be_removed_txt}')
return self.replace_part_of_image(f"{image_path},{to_be_removed_txt},background")
def replace_part_of_image(self, input):
image_path, to_be_replaced_txt, replace_with_txt = input.split(",")
print(f'replace_part_of_image: replace_with_txt {replace_with_txt}')
original_image = Image.open(image_path)
mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
updated_image = self.inpainting(prompt=replace_with_txt, image=original_image, mask_image=mask_image).images[0]
updated_image_path = get_new_image_name(image_path, func_name="replace-something")
updated_image.save(updated_image_path)
return updated_image_path
class Pix2Pix:
def __init__(self, device):
print("Initializing Pix2Pix to %s" % device)
self.device = device
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None).to(device)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
def inference(self, inputs):
"""Change style of image."""
print("===>Starting Pix2Pix Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
original_image = Image.open(image_path)
image = self.pipe(instruct_text,image=original_image,num_inference_steps=40,image_guidance_scale=1.2,).images[0]
updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
image.save(updated_image_path)
return updated_image_path
class T2I:
def __init__(self, device):
print("Initializing T2I to %s" % device)
self.device = device
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
self.pipe.to(device)
def inference(self, text):
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
print(f'{text} refined to {refined_text}')
image = self.pipe(refined_text).images[0]
image.save(image_filename)
print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
return image_filename
class ImageCaptioning:
def __init__(self, device):
print("Initializing ImageCaptioning to %s" % device)
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)
def inference(self, image_path):
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
out = self.model.generate(**inputs)
captions = self.processor.decode(out[0], skip_special_tokens=True)
return captions
class image2canny:
def __init__(self):
print("Direct detect canny.")
self.detector = CannyDetector()
self.low_thresh = 100
self.high_thresh = 200
def inference(self, inputs):
print("===>Starting image2canny Inference")
image = Image.open(inputs)
image = np.array(image)
canny = self.detector(image, self.low_thresh, self.high_thresh)
canny = 255 - canny
image = Image.fromarray(canny)
updated_image_path = get_new_image_name(inputs, func_name="edge")
image.save(updated_image_path)
return updated_image_path
class canny2image:
def __init__(self, device):
print("Initialize the canny2image model.")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_canny.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting canny2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
image = 255 - image
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="canny2image")
real_image = Image.fromarray(x_samples[0]) # get default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2line:
def __init__(self):
print("Direct detect straight line...")
self.detector = MLSDdetector()
self.value_thresh = 0.1
self.dis_thresh = 0.1
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2hough Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
hough = self.detector(resize_image(image, self.resolution), self.value_thresh, self.dis_thresh)
updated_image_path = get_new_image_name(inputs, func_name="line-of")
hough = 255 - cv2.dilate(hough, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
image = Image.fromarray(hough)
image.save(updated_image_path)
return updated_image_path
class line2image:
def __init__(self, device):
print("Initialize the line2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_mlsd.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting line2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
image = 255 - image
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).\
cpu().numpy().clip(0,255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="line2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2hed:
def __init__(self):
print("Direct detect soft HED boundary...")
self.detector = HEDdetector()
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2hed Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
hed = self.detector(resize_image(image, self.resolution))
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
image = Image.fromarray(hed)
image.save(updated_image_path)
return updated_image_path
class hed2image:
def __init__(self, device):
print("Initialize the hed2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_hed.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting hed2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="hed2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2scribble:
def __init__(self):
print("Direct detect scribble.")
self.detector = HEDdetector()
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2scribble Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
detected_map = self.detector(resize_image(image, self.resolution))
detected_map = HWC3(detected_map)
image = resize_image(image, self.resolution)
H, W, C = image.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
detected_map = nms(detected_map, 127, 3.0)
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
detected_map[detected_map > 4] = 255
detected_map[detected_map < 255] = 0
detected_map = 255 - detected_map
updated_image_path = get_new_image_name(inputs, func_name="scribble")
image = Image.fromarray(detected_map)
image.save(updated_image_path)
return updated_image_path
class scribble2image:
def __init__(self, device):
print("Initialize the scribble2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_scribble.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting scribble2image Inference")
print(f'sketch device {self.device}')
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
prompt = instruct_text
image = 255 - image
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2pose:
def __init__(self):
print("Direct human pose.")
self.detector = OpenposeDetector()
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2pose Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
detected_map, _ = self.detector(resize_image(image, self.resolution))
detected_map = HWC3(detected_map)
image = resize_image(image, self.resolution)
H, W, C = image.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
updated_image_path = get_new_image_name(inputs, func_name="human-pose")
image = Image.fromarray(detected_map)
image.save(updated_image_path)
return updated_image_path
class pose2image:
def __init__(self, device):
print("Initialize the pose2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_openpose.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting pose2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="pose2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2seg:
def __init__(self):
print("Direct segmentations.")
self.detector = UniformerDetector()
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2seg Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
detected_map = self.detector(resize_image(image, self.resolution))
detected_map = HWC3(detected_map)
image = resize_image(image, self.resolution)
H, W, C = image.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
updated_image_path = get_new_image_name(inputs, func_name="segmentation")
image = Image.fromarray(detected_map)
image.save(updated_image_path)
return updated_image_path
class seg2image:
def __init__(self, device):
print("Initialize the seg2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_seg.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting seg2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="segment2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2depth:
def __init__(self):
print("Direct depth estimation.")
self.detector = MidasDetector()
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2depth Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
detected_map, _ = self.detector(resize_image(image, self.resolution))
detected_map = HWC3(detected_map)
image = resize_image(image, self.resolution)
H, W, C = image.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
updated_image_path = get_new_image_name(inputs, func_name="depth")
image = Image.fromarray(detected_map)
image.save(updated_image_path)
return updated_image_path
class depth2image:
def __init__(self, device):
print("Initialize depth2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_depth.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting depth2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="depth2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2normal:
def __init__(self):
print("Direct normal estimation.")
self.detector = MidasDetector()
self.resolution = 512
self.bg_threshold = 0.4
def inference(self, inputs):
print("===>Starting image2 normal Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
_, detected_map = self.detector(resize_image(image, self.resolution), bg_th=self.bg_threshold)
detected_map = HWC3(detected_map)
image = resize_image(image, self.resolution)
H, W, C = image.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
updated_image_path = get_new_image_name(inputs, func_name="normal-map")
image = Image.fromarray(detected_map)
image.save(updated_image_path)
return updated_image_path
class normal2image:
def __init__(self, device):
print("Initialize normal2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_normal.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting normal2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
prompt = instruct_text
img = image[:, :, ::-1].copy()
img = resize_image(HWC3(img), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="normal2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class BLIPVQA:
def __init__(self, device):
print("Initializing BLIP VQA to %s" % device)
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(self.device)
def get_answer_from_question_and_image(self, inputs):
image_path, question = inputs.split(",")
raw_image = Image.open(image_path).convert('RGB')
print(F'BLIPVQA :question :{question}')
inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device)
out = self.model.generate(**inputs)
answer = self.processor.decode(out[0], skip_special_tokens=True)
return answer
class ConversationBot:
def __init__(self):
print("Initializing VisualChatGPT")
self.llm = OpenAI(temperature=0)
self.edit = ImageEditing(device="cuda:6")
self.i2t = ImageCaptioning(device="cuda:4")
self.t2i = T2I(device="cuda:1")
self.image2canny = image2canny()
self.canny2image = canny2image(device="cuda:1")
self.image2line = image2line()
self.line2image = line2image(device="cuda:1")
self.image2hed = image2hed()
self.hed2image = hed2image(device="cuda:2")
self.image2scribble = image2scribble()
self.scribble2image = scribble2image(device="cuda:3")
self.image2pose = image2pose()
self.pose2image = pose2image(device="cuda:3")
self.BLIPVQA = BLIPVQA(device="cuda:4")
self.image2seg = image2seg()
self.seg2image = seg2image(device="cuda:7")
self.image2depth = image2depth()
self.depth2image = depth2image(device="cuda:7")
self.image2normal = image2normal()
self.normal2image = normal2image(device="cuda:5")
self.pix2pix = Pix2Pix(device="cuda:3")
self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
self.tools = [
Tool(name="Get Photo Description", func=self.i2t.inference,
description="useful when you want to know what is inside the photo. receives image_path as input. "
"The input to this tool should be a string, representing the image_path. "),
Tool(name="Generate Image From User Input Text", func=self.t2i.inference,
description="useful when you want to generate an image from a user input text and save it to a file. like: generate an image of an object or something, or generate an image that includes some objects. "
"The input to this tool should be a string, representing the text used to generate image. "),
Tool(name="Remove Something From The Photo", func=self.edit.remove_part_of_image,
description="useful when you want to remove and object or something from the photo from its description or location. "
"The input to this tool should be a comma seperated string of two, representing the image_path and the object need to be removed. "),
Tool(name="Replace Something From The Photo", func=self.edit.replace_part_of_image,
description="useful when you want to replace an object from the object description or location with another object from its description. "
"The input to this tool should be a comma seperated string of three, representing the image_path, the object to be replaced, the object to be replaced with "),
Tool(name="Instruct Image Using Text", func=self.pix2pix.inference,
description="useful when you want to the style of the image to be like the text. like: make it look like a painting. or make it like a robot. "
"The input to this tool should be a comma seperated string of two, representing the image_path and the text. "),
Tool(name="Answer Question About The Image", func=self.BLIPVQA.get_answer_from_question_and_image,
description="useful when you need an answer for a question based on an image. like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
"The input to this tool should be a comma seperated string of two, representing the image_path and the question"),
Tool(name="Edge Detection On Image", func=self.image2canny.inference,
description="useful when you want to detect the edge of the image. like: detect the edges of this image, or canny detection on image, or peform edge detection on this image, or detect the canny image of this image. "
"The input to this tool should be a string, representing the image_path"),
Tool(name="Generate Image Condition On Canny Image", func=self.canny2image.inference,
description="useful when you want to generate a new real image from both the user desciption and a canny image. like: generate a real image of a object or something from this canny image, or generate a new real image of a object or something from this edge image. "
"The input to this tool should be a comma seperated string of two, representing the image_path and the user description. "),
Tool(name="Line Detection On Image", func=self.image2line.inference,
description="useful when you want to detect the straight line of the image. like: detect the straight lines of this image, or straight line detection on image, or peform straight line detection on this image, or detect the straight line image of this image. "
"The input to this tool should be a string, representing the image_path"),
Tool(name="Generate Image Condition On Line Image", func=self.line2image.inference,
description="useful when you want to generate a new real image from both the user desciption and a straight line image. like: generate a real image of a object or something from this straight line image, or generate a new real image of a object or something from this straight lines. "
"The input to this tool should be a comma seperated string of two, representing the image_path and the user description. "),
Tool(name="Hed Detection On Image", func=self.image2hed.inference,
description="useful when you want to detect the soft hed boundary of the image. like: detect the soft hed boundary of this image, or hed boundary detection on image, or peform hed boundary detection on this image, or detect soft hed boundary image of this image. "
"The input to this tool should be a string, representing the image_path"),
Tool(name="Generate Image Condition On Soft Hed Boundary Image", func=self.hed2image.inference,
description="useful when you want to generate a new real image from both the user desciption and a soft hed boundary image. like: generate a real image of a object or something from this soft hed boundary image, or generate a new real image of a object or something from this hed boundary. "
"The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
Tool(name="Segmentation On Image", func=self.image2seg.inference,
description="useful when you want to detect segmentations of the image. like: segment this image, or generate segmentations on this image, or peform segmentation on this image. "
"The input to this tool should be a string, representing the image_path"),
Tool(name="Generate Image Condition On Segmentations", func=self.seg2image.inference,
description="useful when you want to generate a new real image from both the user desciption and segmentations. like: generate a real image of a object or something from this segmentation image, or generate a new real image of a object or something from these segmentations. "
"The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
Tool(name="Predict Depth On Image", func=self.image2depth.inference,
description="useful when you want to detect depth of the image. like: generate the depth from this image, or detect the depth map on this image, or predict the depth for this image. "
"The input to this tool should be a string, representing the image_path"),
Tool(name="Generate Image Condition On Depth", func=self.depth2image.inference,
description="useful when you want to generate a new real image from both the user desciption and depth image. like: generate a real image of a object or something from this depth image, or generate a new real image of a object or something from the depth map. "
"The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
Tool(name="Predict Normal Map On Image", func=self.image2normal.inference,
description="useful when you want to detect norm map of the image. like: generate normal map from this image, or predict normal map of this image. "
"The input to this tool should be a string, representing the image_path"),
Tool(name="Generate Image Condition On Normal Map", func=self.normal2image.inference,
description="useful when you want to generate a new real image from both the user desciption and normal map. like: generate a real image of a object or something from this normal map, or generate a new real image of a object or something from the normal map. "
"The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
Tool(name="Sketch Detection On Image", func=self.image2scribble.inference,
description="useful when you want to generate a scribble of the image. like: generate a scribble of this image, or generate a sketch from this image, detect the sketch from this image. "
"The input to this tool should be a string, representing the image_path"),
Tool(name="Generate Image Condition On Sketch Image", func=self.scribble2image.inference,
description="useful when you want to generate a new real image from both the user desciption and a scribble image or a sketch image. "
"The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
Tool(name="Pose Detection On Image", func=self.image2pose.inference,
description="useful when you want to detect the human pose of the image. like: generate human poses of this image, or generate a pose image from this image. "
"The input to this tool should be a string, representing the image_path"),
Tool(name="Generate Image Condition On Pose Image", func=self.pose2image.inference,
description="useful when you want to generate a new real image from both the user desciption and a human pose image. like: generate a real image of a human from this human pose image, or generate a new real image of a human from this pose. "
"The input to this tool should be a comma seperated string of two, representing the image_path and the user description")]
self.agent = initialize_agent(
self.tools,
self.llm,
agent="conversational-react-description",
verbose=True,
memory=self.memory,
return_intermediate_steps=True,
agent_kwargs={'prefix': VISUAL_CHATGPT_PREFIX, 'format_instructions': VISUAL_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': VISUAL_CHATGPT_SUFFIX}, )
def run_text(self, text, state):
print("===============Running run_text =============")
print("Inputs:", text, state)
print("======>Previous memory:\n %s" % self.agent.memory)
self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
res = self.agent({"input": text})
print("======>Current memory:\n %s" % self.agent.memory)
response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
state = state + [(text, response)]
print("Outputs:", state)
return state, state
def run_image(self, image, state, txt):
print("===============Running run_image =============")
print("Inputs:", image, state)
print("======>Previous memory:\n %s" % self.agent.memory)
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
print("======>Auto Resize Image...")
img = Image.open(image.name)
width, height = img.size
ratio = min(512 / width, 512 / height)
width_new, height_new = (round(width * ratio), round(height * ratio))
img = img.resize((width_new, height_new))
img = img.convert('RGB')
img.save(image_filename, "PNG")
print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
description = self.i2t.inference(image_filename)
Human_prompt = "\nHuman: provide a figure named {}. The description is: {}. This information helps you to understand this image, but you should use tools to finish following tasks, " \
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description)
AI_prompt = "Received. "
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
print("======>Current memory:\n %s" % self.agent.memory)
state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)]
print("Outputs:", state)
return state, state, txt + ' ' + image_filename + ' '
bot = ConversationBot()
with gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}") as demo:
chatbot = gr.Chatbot(elem_id="chatbot", label="Visual ChatGPT")
state = gr.State([])
with gr.Row():
with gr.Column(scale=0.7):
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
with gr.Column(scale=0.15, min_width=0):
clear = gr.Button("Clear️")
with gr.Column(scale=0.15, min_width=0):
btn = gr.UploadButton("Upload", file_types=["image"])
txt.submit(bot.run_text, [txt, state], [chatbot, state])
txt.submit(lambda: "", None, txt)
btn.upload(bot.run_image, [btn, state, txt], [chatbot, state, txt])
clear.click(bot.memory.clear)
clear.click(lambda: [], None, chatbot)
clear.click(lambda: [], None, state)
demo.launch()
|