File size: 31,701 Bytes
0b293de
 
 
2d038eb
0b293de
 
 
 
 
 
 
 
 
 
 
 
 
b6c5945
 
0b293de
 
 
 
 
 
 
 
fc5172a
0b293de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6c5945
5076c0f
b6c5945
 
 
0b293de
b6c5945
0b293de
 
 
 
 
b75b8f0
 
b6c5945
 
 
 
 
 
a9d7f19
b6c5945
 
 
 
 
605c3c2
b6c5945
 
 
 
 
 
 
 
b75b8f0
b6c5945
 
 
 
 
0b293de
 
 
 
 
 
b6c5945
 
 
0b293de
d88097b
0b293de
 
 
fc5172a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b293de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313437d
0b293de
de0e542
403777d
79f16cc
0b293de
a53508f
fc5172a
 
314b58e
de0e542
0b293de
 
403777d
 
 
0b293de
 
 
de0e542
 
 
 
 
 
 
 
 
 
314b58e
 
 
0b293de
 
 
a53508f
 
 
6a4e4de
b0b79b7
 
6a4e4de
b0b79b7
 
6a4e4de
b0b79b7
 
6a4e4de
b0b79b7
 
6a4e4de
b0b79b7
 
6a4e4de
b0b79b7
 
13baf64
 
 
 
 
 
 
 
 
6a4e4de
b0b79b7
 
6a4e4de
b0b79b7
 
6a4e4de
b0b79b7
 
fc5172a
 
 
 
 
e3c2978
c9f69e4
34e528b
53ce98a
34e528b
0b293de
 
 
 
 
 
 
 
34e528b
0b293de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474d71a
0b293de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
605c3c2
f59e6b8
 
0b293de
7bc5dfb
be56f7f
67e29ff
79f16cc
403777d
 
 
34e528b
403777d
 
 
 
 
 
0b293de
34e528b
0b293de
 
 
 
 
 
b6c5945
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
os.mkdir('image')
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
import torch
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
from langchain.agents.initialize import initialize_agent
from langchain.agents.tools import Tool
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.llms.openai import OpenAI
import re
import uuid
from diffusers import StableDiffusionInpaintPipeline
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
import cv2
import einops
from pytorch_lightning import seed_everything
import random
from controlnet_aux import OpenposeDetector

VISUAL_CHATGPT_PREFIX = """Visual ChatGPT is designed to be able to assist with a wide range of text and visual related tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. Visual ChatGPT is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.

Visual ChatGPT is able to process and understand large amounts of text and images. As a language model, Visual ChatGPT can not directly read images, but it has a list of tools to finish different visual tasks. Each image will have a file name formed as "image/xxx.png", and Visual ChatGPT can invoke different tools to indirectly understand pictures. When talking about images, Visual ChatGPT is very strict to the file name and will never fabricate nonexistent files. When using tools to generate new image files, Visual ChatGPT is also known that the image may not be the same as the user's demand, and will use other visual question answering tools or description tools to observe the real image. Visual ChatGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the image content and image file name. It will remember to provide the file name from the last tool observation, if a new image is generated.

Human may provide new figures to Visual ChatGPT with a description. The description helps Visual ChatGPT to understand this image, but Visual ChatGPT should use tools to finish following tasks, rather than directly imagine from the description.

Overall, Visual ChatGPT is a powerful visual dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. 


TOOLS:
------

Visual ChatGPT  has access to the following tools:"""

VISUAL_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format:

```
Thought: Do I need to use a tool? Yes
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
```

When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:

```
Thought: Do I need to use a tool? No
{ai_prefix}: [your response here]
```
"""

VISUAL_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if it does not exist.
You will remember to provide the image file name loyally if it's provided in the last tool observation.

Begin!

Previous conversation history:
{chat_history}

New input: {input}
Since Visual ChatGPT is a text language model, Visual ChatGPT must use tools to observe images rather than imagination.
The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human. 
Thought: Do I need to use a tool? {agent_scratchpad}"""

def cut_dialogue_history(history_memory, keep_last_n_words=500):
    tokens = history_memory.split()
    n_tokens = len(tokens)
    print(f"hitory_memory:{history_memory}, n_tokens: {n_tokens}")
    if n_tokens < keep_last_n_words:
        return history_memory
    else:
        paragraphs = history_memory.split('\n')
        last_n_tokens = n_tokens
        while last_n_tokens >= keep_last_n_words:
            last_n_tokens = last_n_tokens - len(paragraphs[0].split(' '))
            paragraphs = paragraphs[1:]
        return '\n' + '\n'.join(paragraphs)

def get_new_image_name(org_img_name, func_name="update"):
    head_tail = os.path.split(org_img_name)
    head = head_tail[0]
    tail = head_tail[1]
    name_split = tail.split('.')[0].split('_')
    this_new_uuid = str(uuid.uuid4())[0:4]
    if len(name_split) == 1:
        most_org_file_name = name_split[0]
        recent_prev_file_name = name_split[0]
        new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
    else:
        assert len(name_split) == 4
        most_org_file_name = name_split[3]
        recent_prev_file_name = name_split[0]
        new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
    return os.path.join(head, new_file_name)

def create_model(config_path, device):
    config = OmegaConf.load(config_path)
    OmegaConf.update(config, "model.params.cond_stage_config.params.device", device)
    model = instantiate_from_config(config.model).cpu()
    print(f'Loaded model config from [{config_path}]')
    return model

class MaskFormer:
    def __init__(self, device):
        self.device = device
        self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
        self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)

    def inference(self, image_path, text):
        threshold = 0.5
        min_area = 0.02
        padding = 20
        original_image = Image.open(image_path)
        image = original_image.resize((512, 512))
        inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt",).to(self.device)
        with torch.no_grad():
            outputs = self.model(**inputs)
        mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
        area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
        if area_ratio < min_area:
            return None
        true_indices = np.argwhere(mask)
        mask_array = np.zeros_like(mask, dtype=bool)
        for idx in true_indices:
            padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
            mask_array[padded_slice] = True
        visual_mask = (mask_array * 255).astype(np.uint8)
        image_mask = Image.fromarray(visual_mask)
        return image_mask.resize(image.size)

class ImageEditing:
    def __init__(self, device):
        print("Initializing StableDiffusionInpaint to %s" % device)
        self.device = device
        self.mask_former = MaskFormer(device=self.device)
        self.inpainting = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting",).to(device)

    def remove_part_of_image(self, input):
        image_path, to_be_removed_txt = input.split(",")
        print(f'remove_part_of_image: to_be_removed {to_be_removed_txt}')
        return self.replace_part_of_image(f"{image_path},{to_be_removed_txt},background")

    def replace_part_of_image(self, input):
        image_path, to_be_replaced_txt, replace_with_txt = input.split(",")
        print(f'replace_part_of_image: replace_with_txt {replace_with_txt}')
        original_image = Image.open(image_path)
        mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
        updated_image = self.inpainting(prompt=replace_with_txt, image=original_image, mask_image=mask_image).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="replace-something")
        updated_image.save(updated_image_path)
        return updated_image_path

class Pix2Pix:
    def __init__(self, device):
        print("Initializing Pix2Pix to %s" % device)
        self.device = device
        self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None).to(device)
        self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)

    def inference(self, inputs):
        """Change style of image."""
        print("===>Starting Pix2Pix Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        original_image = Image.open(image_path)
        image = self.pipe(instruct_text,image=original_image,num_inference_steps=40,image_guidance_scale=1.2,).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
        image.save(updated_image_path)
        return updated_image_path

class T2I:
    def __init__(self, device):
        print("Initializing T2I to %s" % device)
        self.device = device
        self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
        self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
        self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
        self.pipe.to(device)

    def inference(self, text):
        image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
        refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
        print(f'{text} refined to {refined_text}')
        image = self.pipe(refined_text).images[0]
        image.save(image_filename)
        print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
        return image_filename

class ImageCaptioning:
    def __init__(self, device):
        print("Initializing ImageCaptioning to %s" % device)
        self.device = device
        self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
        self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)

    def inference(self, image_path):
        inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
        out = self.model.generate(**inputs)
        captions = self.processor.decode(out[0], skip_special_tokens=True)
        return captions

class image2canny:
    def __init__(self):
        print("Direct detect canny.")
        self.low_thresh = 100
        self.high_thresh = 200

    def inference(self, inputs):
        print("===>Starting image2canny Inference")
        image = Image.open(inputs)
        image = np.array(image)

        image = cv2.Canny(image, self.low_thresh, self.high_thresh)
        image = image[:, :, None]
        image = np.concatenate([image, image, image], axis=2)
        canny_image = Image.fromarray(image)
        updated_image_path = get_new_image_name(inputs, func_name="edge")
        canny_image.save(updated_image_path)
        return updated_image_path

class canny2image:
    def __init__(self, device):
        print("Initialize the canny2image model.")
        self.low_threshold = 100
        self.high_threshold = 200

        # Models
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        
        # This command loads the individual model components on GPU on-demand. So, we don't
        # need to explicitly call pipe.to("cuda").
        self.pipe.enable_model_cpu_offload()
        
        self.pipe.enable_xformers_memory_efficient_attention()
        
        # Generator seed,
        self.generator = torch.manual_seed(0)
    

    def get_canny_filter(self,image):
        if not isinstance(image, np.ndarray):
            image = np.array(image) 
        image = cv2.Canny(image, self.low_threshold, self.high_threshold)
        image = image[:, :, None]
        image = np.concatenate([image, image, image], axis=2)
        canny_image = Image.fromarray(image)
        return canny_image
        
    def inference(self, inputs):
        print("===>Starting canny2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        image = np.array(image)
        prompt = instruct_text
        canny_image = self.get_canny_filter(image)
        output = self.pipe(prompt,canny_image,generator=self.generator,num_images_per_prompt=1,num_inference_steps=20)
        
        updated_image_path = get_new_image_name(image_path, func_name="canny2image")
        real_image = output.images[0]  # get default the index0 image
        real_image.save(updated_image_path)
        return updated_image_path

class image2pose:
    def __init__(self):
        print("Direct detect pose.")
        
    def inference(self, inputs):
        print("===>Starting image2pose Inference")
        image = Image.open(inputs)
        image = np.array(image)
        pose_image = pose_model(image)
        
        updated_image_path = get_new_image_name(inputs, func_name="pose")
        pose_image.save(updated_image_path)
        return updated_image_path


class pose2image:
    def __init__(self, device):
        print("Initialize the pose2image model.")
        

        # Models
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        
        # This command loads the individual model components on GPU on-demand. So, we don't
        # need to explicitly call pipe.to("cuda").
        self.pipe.enable_model_cpu_offload()
        
        self.pipe.enable_xformers_memory_efficient_attention()
        
        # Generator seed,
        self.generator = torch.manual_seed(0)
    

    def get_pose(self,image):
        return pose_model(image)
        
    def inference(self, inputs):
        print("===>Starting pose2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        image = np.array(image)
        prompt = instruct_text
        pose_image = self.get_pose(image)
        output = self.pipe(prompt,pose_image,generator=self.generator,num_images_per_prompt=1,num_inference_steps=20)
        
        updated_image_path = get_new_image_name(image_path, func_name="pose2image")
        real_image = output.images[0]  # get default the index0 image
        real_image.save(updated_image_path)
        return updated_image_path


class BLIPVQA:
    def __init__(self, device):
        print("Initializing BLIP VQA to %s" % device)
        self.device = device
        self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
        self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(self.device)

    def get_answer_from_question_and_image(self, inputs):
        image_path, question = inputs.split(",")
        raw_image = Image.open(image_path).convert('RGB')
        print(F'BLIPVQA :question :{question}')
        inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device)
        out = self.model.generate(**inputs)
        answer = self.processor.decode(out[0], skip_special_tokens=True)
        return answer

class ConversationBot:
    def __init__(self):
        print("Initializing VisualChatGPT")
        self.edit = ImageEditing(device="cuda:0")
        self.i2t = ImageCaptioning(device="cuda:0")
        self.t2i = T2I(device="cuda:0")
        self.image2canny = image2canny()
        self.canny2image = canny2image(device="cuda:0")
        self.image2pose = image2pose()
        self.pose2image = pose2image(device="cuda:0")
        self.BLIPVQA = BLIPVQA(device="cuda:0")
        self.pix2pix = Pix2Pix(device="cuda:0")
        self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
        self.tools = [
            Tool(name="Get Photo Description", func=self.i2t.inference,
                 description="useful when you want to know what is inside the photo. receives image_path as input. "
                             "The input to this tool should be a string, representing the image_path. "),
            Tool(name="Generate Image From User Input Text", func=self.t2i.inference,
                 description="useful when you want to generate an image from a user input text and save it to a file. like: generate an image of an object or something, or generate an image that includes some objects. "
                             "The input to this tool should be a string, representing the text used to generate image. "),
            Tool(name="Remove Something From The Photo", func=self.edit.remove_part_of_image,
                 description="useful when you want to remove and object or something from the photo from its description or location. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the object need to be removed. "),
            Tool(name="Replace Something From The Photo", func=self.edit.replace_part_of_image,
                 description="useful when you want to replace an object from the object description or location with another object from its description. "
                             "The input to this tool should be a comma seperated string of three, representing the image_path, the object to be replaced, the object to be replaced with "),

            Tool(name="Instruct Image Using Text", func=self.pix2pix.inference,
                 description="useful when you want to the style of the image to be like the text. like: make it look like a painting. or make it like a robot. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the text. "),
            Tool(name="Answer Question About The Image", func=self.BLIPVQA.get_answer_from_question_and_image,
                 description="useful when you need an answer for a question based on an image. like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the question"),
            Tool(name="Edge Detection On Image", func=self.image2canny.inference,
                 description="useful when you want to detect the edge of the image. like: detect the edges of this image, or canny detection on image, or peform edge detection on this image, or detect the canny image of this image. "
                             "The input to this tool should be a string, representing the image_path"),
            Tool(name="Generate Image Condition On Canny Image", func=self.canny2image.inference,
                 description="useful when you want to generate a new real image from both the user desciption and a canny image. like: generate a real image of a object or something from this canny image, or generate a new real image of a object or something from this edge image. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the user description. "),
            #Tool(name="Line Detection On Image", func=self.image2line.inference,
                 #description="useful when you want to detect the straight line of the image. like: detect the straight lines of this image, or straight line detection on image, or peform straight line detection on this image, or detect the straight line image of this image. "
                 #            "The input to this tool should be a string, representing the image_path"),
            #Tool(name="Generate Image Condition On Line Image", func=self.line2image.inference,
                 #description="useful when you want to generate a new real image from both the user desciption and a straight line image. like: generate a real image of a object or something from this straight line image, or generate a new real image of a object or something from this straight lines. "
                 #            "The input to this tool should be a comma seperated string of two, representing the image_path and the user description. "),
            #Tool(name="Hed Detection On Image", func=self.image2hed.inference,
                 #description="useful when you want to detect the soft hed boundary of the image. like: detect the soft hed boundary of this image, or hed boundary detection on image, or peform hed boundary detection on this image, or detect soft hed boundary image of this image. "
                 #            "The input to this tool should be a string, representing the image_path"),
            #Tool(name="Generate Image Condition On Soft Hed Boundary Image", func=self.hed2image.inference,
                 #description="useful when you want to generate a new real image from both the user desciption and a soft hed boundary image. like: generate a real image of a object or something from this soft hed boundary image, or generate a new real image of a object or something from this hed boundary. "
                  #           "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
            #Tool(name="Segmentation On Image", func=self.image2seg.inference,
                 #description="useful when you want to detect segmentations of the image. like: segment this image, or generate segmentations on this image, or peform segmentation on this image. "
                             #"The input to this tool should be a string, representing the image_path"),
            #Tool(name="Generate Image Condition On Segmentations", func=self.seg2image.inference,
                 #description="useful when you want to generate a new real image from both the user desciption and segmentations. like: generate a real image of a object or something from this segmentation image, or generate a new real image of a object or something from these segmentations. "
                             #"The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
            #Tool(name="Predict Depth On Image", func=self.image2depth.inference,
                 #description="useful when you want to detect depth of the image. like: generate the depth from this image, or detect the depth map on this image, or predict the depth for this image. "
                             #"The input to this tool should be a string, representing the image_path"),
            #Tool(name="Generate Image Condition On Depth",  func=self.depth2image.inference,
                 #description="useful when you want to generate a new real image from both the user desciption and depth image. like: generate a real image of a object or something from this depth image, or generate a new real image of a object or something from the depth map. "
                             #"The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
            #Tool(name="Predict Normal Map On Image", func=self.image2normal.inference,
                 #description="useful when you want to detect norm map of the image. like: generate normal map from this image, or predict normal map of this image. "
                             #"The input to this tool should be a string, representing the image_path"),
            #Tool(name="Generate Image Condition On Normal Map", func=self.normal2image.inference,
                 #description="useful when you want to generate a new real image from both the user desciption and normal map. like: generate a real image of a object or something from this normal map, or generate a new real image of a object or something from the normal map. "
                             #"The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
            #Tool(name="Sketch Detection On Image", func=self.image2scribble.inference,
                 #description="useful when you want to generate a scribble of the image. like: generate a scribble of this image, or generate a sketch from this image, detect the sketch from this image. "
                             #"The input to this tool should be a string, representing the image_path"),
            #Tool(name="Generate Image Condition On Sketch Image", func=self.scribble2image.inference,
                 #description="useful when you want to generate a new real image from both the user desciption and a scribble image or a sketch image. "
                             #"The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
            Tool(name="Pose Detection On Image", func=self.image2pose.inference,
                 description="useful when you want to detect the human pose of the image. like: generate human poses of this image, or generate a pose image from this image. "
                             "The input to this tool should be a string, representing the image_path"),
            Tool(name="Generate Image Condition On Pose Image", func=self.pose2image.inference,
                 description="useful when you want to generate a new real image from both the user desciption and a human pose image. like: generate a real image of a human from this human pose image, or generate a new real image of a human from this pose. "
                             "The input to this tool should be a comma seperated string of two, representing the image_path and the user description")
        ]

    def init_langchain(self,api_key):
        self.llm = OpenAI(temperature = 0, openai_api_key = api_key)
        self.agent = initialize_agent(
            self.tools,
            self.llm,
            agent="conversational-react-description",
            verbose=True,
            memory=self.memory,
            return_intermediate_steps=True,
            agent_kwargs={'prefix': VISUAL_CHATGPT_PREFIX, 'format_instructions': VISUAL_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': VISUAL_CHATGPT_SUFFIX}, )
        return gr.update(visible = True)

    def run_text(self, text, state):
        print("===============Running run_text =============")
        print("Inputs:", text, state)
        print("======>Previous memory:\n %s" % self.agent.memory)
        self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
        res = self.agent({"input": text})
        print("======>Current memory:\n %s" % self.agent.memory)
        response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
        state = state + [(text, response)]
        print("Outputs:", state)
        return state, state

    def run_image(self, image, state, txt):
        print("===============Running run_image =============")
        print("Inputs:", image, state)
        print("======>Previous memory:\n %s" % self.agent.memory)
        image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
        print("======>Auto Resize Image...")
        img = Image.open(image.name)
        width, height = img.size
        ratio = min(512 / width, 512 / height)
        width_new, height_new = (round(width * ratio), round(height * ratio))
        img = img.resize((width_new, height_new))
        img = img.convert('RGB')
        img.save(image_filename, "PNG")
        print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
        description = self.i2t.inference(image_filename)
        Human_prompt = "\nHuman: provide a figure named {}. The description is: {}. This information helps you to understand this image, but you should use tools to finish following tasks, " \
                       "rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description)
        AI_prompt = "Received.  "
        self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
        print("======>Current memory:\n %s" % self.agent.memory)
        state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)]
        print("Outputs:", state)
        return state, state, txt + ' ' + image_filename + ' '
    

bot = ConversationBot()
with gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}") as demo:
    gr.Markdown("# Visual ChatGPT  <p> Visual ChatGPT combines visual foundation models and ChatGPT to send,receive and process images during chatting</p><p>This demo currently only supports text, image captioning, image generation, visual question answering, edge detection on image and generating image conditioned on canny and pose images using the diffusers implementation of ControlNet </p>")
    gr.Markdown("<p> For example usages please refer to the <a href='https://raw.githubusercontent.com/microsoft/visual-chatgpt/main/assets/demo.gif'>official GIF</a></p>")
    gr.Markdown('<p> For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/RamAnanth1/visual-chatGPT?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>')
    openai_api_key_input = gr.Textbox(type = "password", label = "Enter your OpenAI API key here")    
    chatbot = gr.Chatbot(elem_id="chatbot", label="Visual ChatGPT")
    state = gr.State([])

    with gr.Row(visible = False) as input_row:
        with gr.Column(scale=0.7):
            txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
        with gr.Column(scale=0.15, min_width=0):
            clear = gr.Button("Clear️")
        with gr.Column(scale=0.15, min_width=0):
            btn = gr.UploadButton("Upload", file_types=["image"])

    openai_api_key_input.submit(bot.init_langchain,openai_api_key_input,[input_row])
    txt.submit(bot.run_text, [txt, state], [chatbot, state])
    txt.submit(lambda: "", None, txt)
    btn.upload(bot.run_image, [btn, state, txt], [chatbot, state, txt])
    clear.click(bot.memory.clear)
    clear.click(lambda: [], None, chatbot)
    clear.click(lambda: [], None, state)
demo.launch()