Spaces:
Sleeping
Sleeping
File size: 4,003 Bytes
c31f3ff 49f7354 c31f3ff 49f7354 c31f3ff 49f7354 f4e8439 49f7354 bac5e0b 0c8ac4b bac5e0b 55cd195 f5fb067 bac5e0b 9b4c51e f5fb067 bac5e0b c31f3ff 0c8ac4b 49f7354 c31f3ff 49f7354 ea775d8 0c8ac4b 9b4c51e 0c8ac4b 33efff4 f4e8439 ea775d8 db62ab0 ea775d8 db62ab0 ea775d8 bac5e0b ea775d8 55cd195 bac5e0b 55cd195 ea775d8 bac5e0b ea775d8 55cd195 ea775d8 55cd195 bac5e0b ea775d8 cc65dc4 f4e8439 9762748 f4e8439 bac5e0b c31f3ff 60e6eca f4e8439 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import gradio as gr
import joblib
from sklearn.feature_extraction.text import TfidfVectorizer
# Load the saved model and vectorizer
model = joblib.load('tunisian_arabiz_sentiment_analysis_model.pkl')
vectorizer = joblib.load('tfidf_vectorizer.pkl')
def predict_sentiment(text):
if not text.strip():
return (
"No input provided",
"N/A",
"Please enter some text to get a sentiment prediction."
)
text_vectorized = vectorizer.transform([text])
prediction = model.predict(text_vectorized)[0]
probabilities = model.predict_proba(text_vectorized)[0]
confidence = max(probabilities)
sentiment = "Positive" if prediction == 1 else "Negative"
return (
sentiment,
f"{confidence:.2f}",
f"The model predicts this text is {sentiment.lower()} with {confidence:.2%} confidence."
)
# Function to get predictions for examples
def get_example_predictions(examples):
return [predict_sentiment(ex[0]) for ex in examples]
# Example texts
examples = [
["3jebni barcha el film hedha"],
["ma7abitch el mekla mte3 el restaurant"],
["el jaw fi tounes a7la 7aja"],
["ennes el kol te3ba w ma3andhomch flous"],
["كان جات الدنيا دنيا راني ساهرة في دار حماتي"],
["مبابي مانستعرف بيه مدريدي كان مانشوفو مركى هاتريك بمريول الريال"]
]
# Get predictions for examples
example_predictions = get_example_predictions(examples)
# Create formatted examples with predictions
formatted_examples = [
[ex[0], f"{pred[0]} (Confidence: {pred[1]})"]
for ex, pred in zip(examples, example_predictions)
]
# Create Gradio interface
iface = gr.Interface(
fn=predict_sentiment,
inputs=gr.Textbox(lines=3, placeholder="أدخل النص هنا... / Enter your text here..."),
outputs=[
gr.Label(label="Predicted Sentiment"),
gr.Label(label="Confidence Score"),
gr.Textbox(label="Explanation")
],
examples=formatted_examples,
title="Tunisian Arabiz Sentiment Analysis",
description="""
<p>This model predicts the sentiment of Tunisian text as either Positive or Negative. It works with both Tunisian Arabiz and standard Arabic script.</p>
<h4>What is Tunisian Arabiz? / ما هي العربيزية التونسية؟</h4>
<p>Tunisian Arabiz is a way of writing the Tunisian dialect using Latin characters and numbers. For example:</p>
<ul>
<li>"3ajbetni" means "I liked it""</li>
<li>"7aja" means "thing" "</li>
<li>"a3tini 9ahwa" means "give me a coffee""</li>
</ul>
<p>Try the examples below or enter your own text!</p>
<p>!جرب الأمثلة أو أدخل نصك الخاص</p>
""",
article="""
<h3>About the Model</h3>
<p>This sentiment analysis model was trained on a combined dataset from TuniziDataset and the Tunisian Dialect Corpus.
It uses TF-IDF vectorization for feature extraction and Logistic Regression for classification.</p>
<p>The model accepts Tunisian Arabiz written with Latin and Arabic script.</p>
<h3>Limitations</h3>
<p>Due to dataset limitations, neutral sentiment data was removed to achieve maximum performance. </p>
<p>The model may not perform well on very colloquial expressions or new slang terms not present in the training data.
Sentiment can be nuanced and context-dependent, which may not always be captured accurately by this model.</p>
<a href="https://github.com/RamiIbrahim2002/Tunisian-Arabiz/tree/main">Github</a>
<center>
<h2>This model is open-source, and contributions of additional datasets are welcome to improve its capabilities.</h2>
<h2>هذا النموذج مفتوح المصدر، ونرحب بمساهمات مجموعات البيانات الإضافية لتحسين قدراته.</h2>
</center>
"""
)
# Launch the interface
iface.launch()
|