RamiIbrahim commited on
Commit
af8d292
·
verified ·
1 Parent(s): 9244193

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -29
app.py CHANGED
@@ -1,19 +1,3 @@
1
- import os
2
- import joblib
3
- import gradio as gr
4
- from sklearn.feature_extraction.text import TfidfVectorizer
5
- from sklearn.linear_model import LogisticRegression
6
-
7
- MODEL_PATH = 'tunisian_arabiz_sentiment_analysis_model.pkl'
8
- VECTORIZER_PATH = 'tfidf_vectorizer.pkl'
9
-
10
- def load_model():
11
- if os.path.exists(MODEL_PATH) and os.path.exists(VECTORIZER_PATH):
12
- model = joblib.load(MODEL_PATH)
13
- vectorizer = joblib.load(VECTORIZER_PATH)
14
- return model, vectorizer
15
- return None, None
16
-
17
  def predict_sentiment(input_text):
18
  model, vectorizer = load_model()
19
  if model and vectorizer:
@@ -24,20 +8,20 @@ def predict_sentiment(input_text):
24
  prediction = model.predict(input_vector)[0]
25
  probabilities = model.predict_proba(input_vector)[0]
26
 
27
- sentiment = "Positive" if prediction == 1 else "Negative"
28
- confidence = probabilities[1] if prediction == 1 else probabilities[0]
 
 
29
 
 
 
 
 
 
 
 
 
 
30
  return f"Sentiment: {sentiment}\nConfidence: {confidence:.4f}"
31
  else:
32
  return "Model not found or could not be loaded."
33
-
34
- # Gradio Interface
35
- iface = gr.Interface(
36
- fn=predict_sentiment,
37
- inputs="text",
38
- outputs="text",
39
- title="Sentiment Analysis Predictor",
40
- description="Enter a text to predict its sentiment."
41
- )
42
-
43
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  def predict_sentiment(input_text):
2
  model, vectorizer = load_model()
3
  if model and vectorizer:
 
8
  prediction = model.predict(input_vector)[0]
9
  probabilities = model.predict_proba(input_vector)[0]
10
 
11
+ # Debugging prints
12
+ print(f"Input Text: {input_text}")
13
+ print(f"Predicted Class: {prediction}")
14
+ print(f"Probabilities: {probabilities}")
15
 
16
+ # Determine sentiment and confidence
17
+ if prediction == 1:
18
+ sentiment = "Positive"
19
+ confidence = probabilities[1]
20
+ else:
21
+ sentiment = "Negative"
22
+ confidence = probabilities[0]
23
+
24
+ # Return sentiment and confidence
25
  return f"Sentiment: {sentiment}\nConfidence: {confidence:.4f}"
26
  else:
27
  return "Model not found or could not be loaded."