import streamlit as st from transformers import pipeline # Load Hugging Face summarization model @st.cache_resource def load_summarization_model(): summarizer = pipeline("summarization", model="Ramji/bart-cn-large-medical-summary") # You can replace with another model return summarizer summarizer = load_summarization_model() # Streamlit UI st.title("Text Summarization with Hugging Face") st.write("This app uses a Finetuned Bart model to summarize long text inputs.") # Input text area for the user user_input = st.text_area("Enter text to summarize:", height=300) # Summarize when the button is clicked if st.button("Summarize"): if user_input: # Get the summary summary = summarizer(user_input) print("output", summary) # Display the result st.subheader("Summary") st.write(summary[0]['summary_text']) else: st.write("Please enter some text to summarize.")