Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
-
import
|
4 |
import torch
|
5 |
from datetime import datetime
|
6 |
from reportlab.lib.pagesizes import letter
|
@@ -8,11 +12,8 @@ from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PD
|
|
8 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
9 |
from reportlab.lib import colors
|
10 |
from simple_salesforce import Salesforce
|
11 |
-
import os
|
12 |
from dotenv import load_dotenv
|
13 |
-
import
|
14 |
-
import io
|
15 |
-
import concurrent.futures
|
16 |
|
17 |
# Load environment variables from .env file
|
18 |
load_dotenv()
|
@@ -30,23 +31,22 @@ except Exception as e:
|
|
30 |
print(f"Failed to connect to Salesforce: {str(e)}")
|
31 |
|
32 |
# Load BLIP model and processor
|
|
|
33 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
34 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
35 |
-
model.eval()
|
36 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
-
model.to(device)
|
38 |
|
39 |
# Inference function to generate captions dynamically based on image content
|
40 |
def generate_captions_from_image(image):
|
41 |
if image.mode != "RGB":
|
42 |
image = image.convert("RGB")
|
43 |
-
|
44 |
-
# Resize
|
45 |
-
image = image.resize((
|
46 |
|
47 |
# Preprocess the image and generate a caption
|
48 |
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
|
49 |
-
output = model.generate(**inputs,
|
50 |
caption = processor.decode(output[0], skip_special_tokens=True)
|
51 |
|
52 |
return caption
|
@@ -139,9 +139,6 @@ def upload_file_to_salesforce(file_path, filename, sf_connection, file_type):
|
|
139 |
|
140 |
# Generate a valid Salesforce URL for the ContentDocument
|
141 |
content_document_url = f"https://{sf_connection.sf_instance}/sfc/servlet.shepherd/version/download/{content_version_id}"
|
142 |
-
|
143 |
-
|
144 |
-
# Ensure the link is valid
|
145 |
return content_document_id, content_document_url, f"File {filename} uploaded successfully"
|
146 |
except Exception as e:
|
147 |
return None, None, f"Error uploading {filename} to Salesforce: {str(e)}"
|
@@ -180,11 +177,6 @@ def generate_dpr(files):
|
|
180 |
# Save DPR text to PDF
|
181 |
pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, image_paths, captions, pdf_filename)
|
182 |
|
183 |
-
salesforce_result = ""
|
184 |
-
pdf_content_document_id = None
|
185 |
-
pdf_url = None
|
186 |
-
image_content_document_ids = []
|
187 |
-
|
188 |
if sf and pdf_filepath:
|
189 |
try:
|
190 |
# Create Daily_Progress_Reports__c record
|
@@ -193,13 +185,11 @@ def generate_dpr(files):
|
|
193 |
'Detected_Activities__c': report_description # Store in Detected_Activities__c field
|
194 |
})
|
195 |
dpr_record_id = dpr_record['id']
|
196 |
-
salesforce_result += f"Created Daily_Progress_Reports__c record with ID: {dpr_record_id}\n"
|
197 |
|
198 |
# Upload PDF to Salesforce
|
199 |
pdf_content_document_id, pdf_url, pdf_upload_result = upload_file_to_salesforce(
|
200 |
pdf_filepath, pdf_filename, sf, "pdf"
|
201 |
)
|
202 |
-
salesforce_result += pdf_upload_result + "\n"
|
203 |
|
204 |
# Link PDF to DPR record
|
205 |
if pdf_content_document_id:
|
@@ -214,7 +204,6 @@ def generate_dpr(files):
|
|
214 |
sf.Daily_Progress_Reports__c.update(dpr_record_id, {
|
215 |
'PDF_URL__c': pdf_url # Storing the PDF URL correctly
|
216 |
})
|
217 |
-
salesforce_result += f"Updated PDF URL for record ID {dpr_record_id}\n"
|
218 |
|
219 |
# Upload images to Salesforce and link them to DPR record
|
220 |
for file in files:
|
@@ -235,31 +224,40 @@ def generate_dpr(files):
|
|
235 |
sf.Daily_Progress_Reports__c.update(dpr_record_id, {
|
236 |
'Site_Images__c': image_content_document_id # Storing the ContentDocumentId directly
|
237 |
})
|
238 |
-
|
239 |
-
salesforce_result += image_upload_result + "\n"
|
240 |
|
241 |
except Exception as e:
|
242 |
-
|
243 |
-
else:
|
244 |
-
salesforce_result = "Salesforce connection not available or PDF generation failed.\n"
|
245 |
|
246 |
-
# Return
|
247 |
-
|
248 |
-
|
249 |
-
pdf_filepath
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
|
252 |
iface = gr.Interface(
|
253 |
fn=generate_dpr,
|
254 |
inputs=gr.Files(type="filepath", label="Upload Site Photos"),
|
255 |
outputs=[
|
256 |
gr.Textbox(label="Daily Progress Report"),
|
257 |
-
gr.File(label="Download PDF")
|
258 |
],
|
259 |
title="Daily Progress Report Generator",
|
260 |
description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF and images to Salesforce under Daily_Progress_Reports__c in the Files related list. Download the PDF locally if needed.",
|
261 |
-
allow_flagging="never"
|
|
|
262 |
)
|
263 |
|
264 |
if __name__ == "__main__":
|
265 |
-
iface.launch()
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import base64
|
4 |
+
import time
|
5 |
+
import concurrent.futures
|
6 |
from PIL import Image
|
7 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
8 |
import torch
|
9 |
from datetime import datetime
|
10 |
from reportlab.lib.pagesizes import letter
|
|
|
12 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
13 |
from reportlab.lib import colors
|
14 |
from simple_salesforce import Salesforce
|
|
|
15 |
from dotenv import load_dotenv
|
16 |
+
import gradio as gr
|
|
|
|
|
17 |
|
18 |
# Load environment variables from .env file
|
19 |
load_dotenv()
|
|
|
31 |
print(f"Failed to connect to Salesforce: {str(e)}")
|
32 |
|
33 |
# Load BLIP model and processor
|
34 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
36 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
37 |
+
model.eval().to(device)
|
|
|
|
|
38 |
|
39 |
# Inference function to generate captions dynamically based on image content
|
40 |
def generate_captions_from_image(image):
|
41 |
if image.mode != "RGB":
|
42 |
image = image.convert("RGB")
|
43 |
+
|
44 |
+
# Resize for faster processing
|
45 |
+
image = image.resize((224, 224)) # Adjust to smaller resolution for faster inference
|
46 |
|
47 |
# Preprocess the image and generate a caption
|
48 |
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
|
49 |
+
output = model.generate(**inputs, max_length=50)
|
50 |
caption = processor.decode(output[0], skip_special_tokens=True)
|
51 |
|
52 |
return caption
|
|
|
139 |
|
140 |
# Generate a valid Salesforce URL for the ContentDocument
|
141 |
content_document_url = f"https://{sf_connection.sf_instance}/sfc/servlet.shepherd/version/download/{content_version_id}"
|
|
|
|
|
|
|
142 |
return content_document_id, content_document_url, f"File {filename} uploaded successfully"
|
143 |
except Exception as e:
|
144 |
return None, None, f"Error uploading {filename} to Salesforce: {str(e)}"
|
|
|
177 |
# Save DPR text to PDF
|
178 |
pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, image_paths, captions, pdf_filename)
|
179 |
|
|
|
|
|
|
|
|
|
|
|
180 |
if sf and pdf_filepath:
|
181 |
try:
|
182 |
# Create Daily_Progress_Reports__c record
|
|
|
185 |
'Detected_Activities__c': report_description # Store in Detected_Activities__c field
|
186 |
})
|
187 |
dpr_record_id = dpr_record['id']
|
|
|
188 |
|
189 |
# Upload PDF to Salesforce
|
190 |
pdf_content_document_id, pdf_url, pdf_upload_result = upload_file_to_salesforce(
|
191 |
pdf_filepath, pdf_filename, sf, "pdf"
|
192 |
)
|
|
|
193 |
|
194 |
# Link PDF to DPR record
|
195 |
if pdf_content_document_id:
|
|
|
204 |
sf.Daily_Progress_Reports__c.update(dpr_record_id, {
|
205 |
'PDF_URL__c': pdf_url # Storing the PDF URL correctly
|
206 |
})
|
|
|
207 |
|
208 |
# Upload images to Salesforce and link them to DPR record
|
209 |
for file in files:
|
|
|
224 |
sf.Daily_Progress_Reports__c.update(dpr_record_id, {
|
225 |
'Site_Images__c': image_content_document_id # Storing the ContentDocumentId directly
|
226 |
})
|
|
|
|
|
227 |
|
228 |
except Exception as e:
|
229 |
+
pass # No output for Salesforce errors now
|
|
|
|
|
230 |
|
231 |
+
# Return the PDF file for Gradio download (using shutil to copy and return the file)
|
232 |
+
if pdf_filepath:
|
233 |
+
# Copy the PDF file to a temporary directory for Gradio to serve it
|
234 |
+
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
|
235 |
+
shutil.copy(pdf_filepath, temp_pdf_path)
|
236 |
+
|
237 |
+
# Only return the DPR output and the PDF file path, excluding Salesforce upload details
|
238 |
+
return (
|
239 |
+
dpr_output + f"\n\n{pdf_result}", # Removed Salesforce upload status
|
240 |
+
temp_pdf_path # Returning the file path for download
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
return (
|
244 |
+
dpr_output + f"\n\n{pdf_result}", # Removed Salesforce upload status
|
245 |
+
None
|
246 |
+
)
|
247 |
+
|
248 |
# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
|
249 |
iface = gr.Interface(
|
250 |
fn=generate_dpr,
|
251 |
inputs=gr.Files(type="filepath", label="Upload Site Photos"),
|
252 |
outputs=[
|
253 |
gr.Textbox(label="Daily Progress Report"),
|
254 |
+
gr.File(label="Download PDF", interactive=False)
|
255 |
],
|
256 |
title="Daily Progress Report Generator",
|
257 |
description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF and images to Salesforce under Daily_Progress_Reports__c in the Files related list. Download the PDF locally if needed.",
|
258 |
+
allow_flagging="never",
|
259 |
+
css="#gradio-share-link-button-0 { display: none !important; }"
|
260 |
)
|
261 |
|
262 |
if __name__ == "__main__":
|
263 |
+
iface.launch()
|