Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,10 @@ from PIL import Image
|
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Load BLIP model and processor
|
8 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
@@ -23,7 +27,54 @@ def generate_captions_from_image(image):
|
|
23 |
|
24 |
return caption
|
25 |
|
26 |
-
# Function to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def generate_dpr(files):
|
28 |
dpr_text = []
|
29 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
@@ -45,9 +96,18 @@ def generate_dpr(files):
|
|
45 |
# Generate DPR section for this image with dynamic caption
|
46 |
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
|
47 |
dpr_text.append(dpr_section)
|
48 |
-
|
49 |
-
#
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Gradio interface for uploading multiple files and displaying the text-based DPR
|
53 |
iface = gr.Interface(
|
@@ -55,8 +115,9 @@ iface = gr.Interface(
|
|
55 |
inputs=gr.Files(type="filepath", label="Upload Site Photos"), # Handle batch upload of images
|
56 |
outputs="text", # Display the DPR as text in the output section
|
57 |
title="Daily Progress Report Generator",
|
58 |
-
description="Upload up to 10 site photos. The AI model will dynamically detect construction activities, materials, and progress and generate a text-based Daily Progress Report (DPR).",
|
59 |
allow_flagging="never" # Optional: Disable flagging
|
60 |
)
|
61 |
|
62 |
-
|
|
|
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
from datetime import datetime
|
6 |
+
from reportlab.lib.pagesizes import letter
|
7 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
8 |
+
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
9 |
+
from reportlab.lib import colors
|
10 |
|
11 |
# Load BLIP model and processor
|
12 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
|
|
27 |
|
28 |
return caption
|
29 |
|
30 |
+
# Function to save DPR text to a PDF file
|
31 |
+
def save_dpr_to_pdf(dpr_text, filename):
|
32 |
+
try:
|
33 |
+
# Create a PDF document
|
34 |
+
doc = SimpleDocTemplate(filename, pagesize=letter)
|
35 |
+
styles = getSampleStyleSheet()
|
36 |
+
|
37 |
+
# Define custom styles
|
38 |
+
title_style = ParagraphStyle(
|
39 |
+
name='Title',
|
40 |
+
fontSize=16,
|
41 |
+
leading=20,
|
42 |
+
alignment=1, # Center
|
43 |
+
spaceAfter=20,
|
44 |
+
textColor=colors.black,
|
45 |
+
fontName='Helvetica-Bold'
|
46 |
+
)
|
47 |
+
body_style = ParagraphStyle(
|
48 |
+
name='Body',
|
49 |
+
fontSize=12,
|
50 |
+
leading=14,
|
51 |
+
spaceAfter=10,
|
52 |
+
textColor=colors.black,
|
53 |
+
fontName='Helvetica'
|
54 |
+
)
|
55 |
+
|
56 |
+
# Build the PDF content
|
57 |
+
flowables = []
|
58 |
+
|
59 |
+
# Add title
|
60 |
+
flowables.append(Paragraph("Daily Progress Report", title_style))
|
61 |
+
|
62 |
+
# Split DPR text into lines and add as paragraphs
|
63 |
+
for line in dpr_text.split('\n'):
|
64 |
+
# Replace problematic characters for PDF
|
65 |
+
line = line.replace('\u2019', "'").replace('\u2018', "'")
|
66 |
+
if line.strip():
|
67 |
+
flowables.append(Paragraph(line, body_style))
|
68 |
+
else:
|
69 |
+
flowables.append(Spacer(1, 12))
|
70 |
+
|
71 |
+
# Build the PDF
|
72 |
+
doc.build(flowables)
|
73 |
+
return f"PDF saved successfully as {filename}"
|
74 |
+
except Exception as e:
|
75 |
+
return f"Error saving PDF: {str(e)}"
|
76 |
+
|
77 |
+
# Function to generate the daily progress report (DPR) text and save as PDF
|
78 |
def generate_dpr(files):
|
79 |
dpr_text = []
|
80 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
96 |
# Generate DPR section for this image with dynamic caption
|
97 |
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
|
98 |
dpr_text.append(dpr_section)
|
99 |
+
|
100 |
+
# Combine DPR text
|
101 |
+
dpr_output = "\n".join(dpr_text)
|
102 |
+
|
103 |
+
# Generate PDF filename with timestamp
|
104 |
+
pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
105 |
+
|
106 |
+
# Save DPR text to PDF
|
107 |
+
pdf_result = save_dpr_to_pdf(dpr_output, pdf_filename)
|
108 |
+
|
109 |
+
# Return the DPR text and PDF save status
|
110 |
+
return f"{dpr_output}\n\n{pdf_result}"
|
111 |
|
112 |
# Gradio interface for uploading multiple files and displaying the text-based DPR
|
113 |
iface = gr.Interface(
|
|
|
115 |
inputs=gr.Files(type="filepath", label="Upload Site Photos"), # Handle batch upload of images
|
116 |
outputs="text", # Display the DPR as text in the output section
|
117 |
title="Daily Progress Report Generator",
|
118 |
+
description="Upload up to 10 site photos. The AI model will dynamically detect construction activities, materials, and progress and generate a text-based Daily Progress Report (DPR). The DPR will also be saved as a PDF.",
|
119 |
allow_flagging="never" # Optional: Disable flagging
|
120 |
)
|
121 |
|
122 |
+
if __name__ == "__main__":
|
123 |
+
iface.launch()
|