Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,48 @@
|
|
1 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
2 |
-
from PIL import Image
|
3 |
import gradio as gr
|
4 |
import torch
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Load
|
7 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
8 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
9 |
-
model.eval()
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
model.to(device)
|
12 |
|
13 |
-
# Inference function
|
14 |
def generate_caption(image):
|
|
|
|
|
15 |
if image.mode != "RGB":
|
16 |
image = image.convert("RGB")
|
17 |
|
18 |
-
inputs = processor(image, return_tensors="pt").to(device
|
19 |
output = model.generate(**inputs, max_new_tokens=50)
|
20 |
caption = processor.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
21 |
return caption
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
iface = gr.Interface(
|
25 |
-
fn=
|
26 |
-
inputs=gr.
|
27 |
-
outputs="text",
|
28 |
-
title="
|
29 |
-
description="Upload
|
|
|
30 |
)
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import time
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
6 |
+
from utils import create_pdf
|
7 |
|
8 |
+
# Load model and processor
|
9 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
10 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
|
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
model.to(device)
|
13 |
|
|
|
14 |
def generate_caption(image):
|
15 |
+
start_time = time.time()
|
16 |
+
|
17 |
if image.mode != "RGB":
|
18 |
image = image.convert("RGB")
|
19 |
|
20 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
21 |
output = model.generate(**inputs, max_new_tokens=50)
|
22 |
caption = processor.decode(output[0], skip_special_tokens=True)
|
23 |
+
|
24 |
+
duration = time.time() - start_time
|
25 |
+
if duration > 5:
|
26 |
+
caption = f"⚠️ Took {round(duration, 2)}s: {caption}"
|
27 |
+
|
28 |
return caption
|
29 |
|
30 |
+
def process_images(images):
|
31 |
+
results = []
|
32 |
+
for i, img in enumerate(images[:10]): # Limit to 10 images
|
33 |
+
caption = generate_caption(img)
|
34 |
+
results.append(f"Image {i+1}: {caption}")
|
35 |
+
pdf_file = create_pdf(results)
|
36 |
+
return "\n\n".join(results), pdf_file
|
37 |
+
|
38 |
iface = gr.Interface(
|
39 |
+
fn=process_images,
|
40 |
+
inputs=gr.File(label="Upload up to 10 Site Images", type="file", file_types=[".jpg", ".png"], multiple=True),
|
41 |
+
outputs=["text", "file"],
|
42 |
+
title="Auto-DPR Generator from Site Images",
|
43 |
+
description="Upload construction site images. AI will auto-generate a progress summary and downloadable PDF.",
|
44 |
+
allow_flagging="never"
|
45 |
)
|
46 |
|
47 |
+
if __name__ == "__main__":
|
48 |
+
iface.launch()
|