Spaces:
Running
Running
# import pandas as pd | |
import polars as pl | |
import numpy as np | |
from gradio_client import Client | |
from tqdm.auto import tqdm | |
import os | |
import re | |
from translate import ( | |
translate_pa_outcome, translate_pitch_outcome, | |
jp_pitch_to_en_pitch, jp_pitch_to_pitch_code, | |
max_pitch_types | |
) | |
# load game data | |
game_df = pl.read_csv('game.csv').unique() | |
assert len(game_df) == len(game_df['game_pk'].unique()) | |
# load pa data | |
pa_df = [] | |
for game_pk in tqdm(game_df['game_pk']): | |
pa_df.append(pl.read_csv(os.path.join('pa', f'{game_pk}.csv'), schema_overrides={'pa_pk': str})) | |
pa_df = pl.concat(pa_df) | |
# load pitch data | |
pitch_df = [] | |
for game_pk in tqdm(game_df['game_pk']): | |
pitch_df.append(pl.read_csv(os.path.join('pitch', f'{game_pk}.csv'), schema_overrides={'pa_pk': str, 'on_1b': pl.Int64, 'on_2b': pl.Int64, 'on_3b': pl.Int64})) | |
pitch_df = pl.concat(pitch_df) | |
# load player data | |
player_df = pl.read_csv('player.csv') | |
# translate pa data | |
def identify_bb_type(hit_type): | |
if hit_type in list(range(1, 10)) + list(range(40, 49)): | |
return 'ground_ball' | |
elif hit_type in list(range(58, 67))+list(range(201, 209)): | |
return 'line_drive' | |
elif hit_type in list(range(28, 31)) + list(range(55, 58)) + list(range(107, 110)) + list(range(247, 251)): | |
return 'fly_ball' | |
elif hit_type in list(range(49, 55)) + list(range(103, 107)) + list(range(242, 248)): | |
return 'pop_up' | |
elif hit_type in [31, 32]: | |
return None | |
else: | |
raise Exception(f'Unexpect hit_type {hit_type}') | |
pa_df = ( | |
pa_df | |
.with_columns( | |
pl.col('des').str.strip_chars().alias('_des'), | |
pl.col('des').str.strip_chars(), | |
pl.col('des_more').str.strip_chars() | |
) | |
.with_columns( | |
pl.col('des').fill_null(pl.col('des_more')) | |
) | |
.with_columns( | |
pl.when( | |
(pl.col('des').str.split(' ').list.len() > 1) & | |
(pl.col('des').str.contains(r'+\d+点')) | |
) | |
.then(pl.col('des').str.split(' ').list.first()) | |
.otherwise(pl.col('des')) | |
.alias('des') | |
) | |
.with_columns( | |
pl.when( | |
pl.col('des').is_in(['ボール', '見逃し', '空振り']) | | |
pl.col('des').str.ends_with('塁けん制') | |
) | |
.then( | |
pl.col('des_more') | |
) | |
.otherwise( | |
pl.col('des') | |
) | |
.alias('des') | |
) | |
.with_columns( | |
pl.col('des').map_elements(translate_pa_outcome, return_dtype=str) | |
) | |
.with_columns( | |
pl.col('bb_type').alias('hit_type').str.strip_prefix('dakyu').cast(int).alias('hit_type') | |
) | |
.with_columns( | |
pl.col('hit_type').map_elements(lambda hit_type: identify_bb_type(hit_type), return_dtype=str).alias('bb_type') | |
) | |
) | |
# translate pitch data | |
pitch_df = ( | |
pitch_df | |
.filter(pl.col('pitch_name').is_not_null()) | |
.with_columns( | |
pl.col('pitch_name').alias('jp_pitch_name') | |
) | |
.with_columns( | |
pl.col('jp_pitch_name').map_elements(lambda pitch_name: jp_pitch_to_en_pitch[pitch_name], return_dtype=str).alias('pitch_name'), | |
pl.col('jp_pitch_name').map_elements(lambda pitch_name: jp_pitch_to_pitch_code[pitch_name], return_dtype=str).alias('pitch_type'), | |
pl.col('description').str.split(' ').list.first().map_elements(translate_pitch_outcome, return_dtype=str), | |
pl.when( | |
pl.col('release_speed') != '-' | |
) | |
.then( | |
pl.col('release_speed').str.strip_suffix('km/h') | |
) | |
.otherwise( | |
None | |
) | |
.alias('release_speed'), | |
((pl.col('plate_x') + 13) - 80).alias('plate_x'), | |
(200 - (pl.col('plate_z') + 13) - 100).alias('plate_z'), | |
) | |
.with_columns( | |
pl.col('release_speed').cast(int), # idk why I can't do this during the strip_suffix step | |
) | |
) | |
# translate player data | |
player_df = pl.read_csv('player.csv') | |
register = ( | |
pl.read_csv('register.csv') | |
.with_columns( | |
pl.col('en_name').str.replace(',', '').alias('en_name'), | |
) | |
.select( | |
pl.col('en_name'), | |
pl.col('jp_team').alias('team'), | |
pl.col('jp_name').alias('name') | |
) | |
) | |
player_df = player_df.join(register, on=['name', 'team'], how='inner').with_columns(pl.col('en_name').alias('name')).drop(pl.col('en_name')) | |
# merge pitch and pa data | |
df = ( | |
( | |
pitch_df | |
.join(pa_df, on=['game_pk', 'pa_pk'], how='inner') | |
.join(player_df.rename({'player_id': 'pitcher'}), on='pitcher', how='inner') | |
) | |
.with_columns( | |
pl.col('description').is_in(['SS', 'K']).alias('whiff'), | |
~pl.col('description').is_in(['B', 'BB', 'LS', 'inv_K', 'bunt_K', 'HBP', 'SH', 'SH E', 'SH FC', 'obstruction', 'illegal_pitch', 'defensive_interference']).alias('swing'), | |
pl.col('description').is_in(['SS', 'K', 'LS', 'inv_K']).alias('csw'), | |
~pl.col('description').is_in(['obstruction', 'illegal_pitch', 'defensive_interference']).alias('normal_pitch') # guess | |
) | |
).sort(['game_pk', 'pa_pk', 'pitch_id']) | |
# add players to pa_df | |
# unfortunately we have pas that don't show up in the pitch data, so this would be useful for | |
pa_df = pa_df.join(player_df.rename({'player_id': 'pitcher'}), on='pitcher', how='inner') | |
pitch_stats, rhb_pitch_stats, lhb_pitch_stats = [ | |
( | |
_df | |
.group_by(['name', 'pitch_name']) | |
.agg( | |
((pl.col('whiff').sum() / pl.col('swing').sum()) * 100).round(1).alias('Whiff%'), | |
((pl.col('csw').sum() / pl.col('normal_pitch').sum()) * 100).round(1).alias('CSW%'), | |
pl.col('release_speed').mean().round(1).alias('Velocity'), | |
pl.len().alias('Count') | |
) | |
.sort(['name', 'Count'], descending=[False, True]) | |
# .rename({'name': 'Player', 'pitch_name': 'Pitch'}) | |
) | |
for _df | |
in ( | |
df, | |
df.filter(pl.col('stand') == 'R'), | |
df.filter(pl.col('stand') == 'L'), | |
) | |
] | |
league_pitch_stats, rhb_league_pitch_stats, lhb_league_pitch_stats = [ | |
_df.group_by('pitch_name').agg(pl.col('release_speed').mean().round(1).alias('Velocity')) | |
for _df | |
in ( | |
df, | |
df.filter(pl.col('stand') == 'R'), | |
df.filter(pl.col('stand') == 'L'), | |
) | |
] | |