Spaces:
Build error
Build error
File size: 12,776 Bytes
9d7970d 26e0ac6 9d7970d 26c325e cf5350e b5b8cda aaf4937 9d7970d 26c325e 9d7970d 26c325e 9d7970d 26c325e 9d7970d 26c325e 9d7970d 4318ef2 9d7970d e7a5154 26c325e 43049df 26e0ac6 43049df 26e0ac6 9d7970d 43049df 26e0ac6 43049df 9d7970d f101223 26c325e 9d7970d 26c325e e7a5154 26c325e e7a5154 26c325e 26e0ac6 43049df e7a5154 26c325e 43049df 26c325e 43049df 26c325e 9d7970d aaf4937 e7a5154 aaf4937 13a3a28 aaf4937 e7a5154 26e0ac6 aaf4937 26e0ac6 aaf4937 13a3a28 aaf4937 26e0ac6 aaf4937 13a3a28 aaf4937 43049df aaf4937 13a3a28 aaf4937 43049df aaf4937 26e0ac6 43049df 13a3a28 aaf4937 e7a5154 9d7970d 26e0ac6 e7a5154 b5b8cda e7a5154 b5b8cda e7a5154 b5b8cda e7a5154 26e0ac6 26c325e 9d7970d 26e0ac6 e7a5154 26e0ac6 26c325e 9d7970d 26c325e 9d7970d 26e0ac6 26c325e 9d7970d 26e0ac6 b5b8cda 9d7970d 43049df 26e0ac6 43049df e7a5154 43049df 9d7970d 26c325e 9d7970d 26c325e 9d7970d 26e0ac6 b5b8cda 26e0ac6 b5b8cda 26e0ac6 9d7970d e7a5154 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import plotly.express as px
import plotly.graph_objects as go
import plotly.colors as pc
from scipy.stats import gaussian_kde
import numpy as np
# import pandas as pd
import polars as pl
import gradio as gr
from translate import max_pitch_types
from data import (
df,
pitch_stats, rhb_pitch_stats,lhb_pitch_stats,
league_pitch_stats, rhb_league_pitch_stats, lhb_league_pitch_stats
)
# GRADIO FUNCTIONS
# location maps
def fit_pred_kde(data, X, Y):
kde = gaussian_kde(data)
return kde(np.stack((X, Y)).reshape(2, -1)).reshape(*X.shape)
plot_s = 256
sz_h = 200
sz_w = 160
h_h = 200 - 40*2
h_w = 160 - 32*2
kde_range = np.arange(-plot_s/2, plot_s/2, 1)
X, Y = np.meshgrid(
kde_range,
kde_range
)
def coordinatify(h, w):
return dict(
x0=-w/2,
y0=-h/2,
x1=w/2,
y1=h/2
)
colorscale = pc.sequential.OrRd
colorscale = [
[0, 'rgba(0, 0, 0, 0)'],
] + [
[i / len(colorscale), color] for i, color in enumerate(colorscale, start=1)
]
def plot_pitch_map(df, player=None, loc=None, pitch_type=None, pitch_name=None, all_pitches=False, min_pitches=2):
assert not ((loc is None and player is None) or (loc is not None and player is not None)), 'exactly one of `player` or `loc` must be specified'
if loc is None and player is not None:
if all_pitches:
assert not (pitch_type is not None or pitch_name is not None), 'cannot have `pitch_type` or `pitch_name` when `all_pitches` is `True`'
# loc = df.set_index('name').sort_index().loc[player, ['plate_x', 'plate_z']]
loc = df.filter(pl.col('name') == player).select(['plate_x', 'plate_z'])
else:
assert not ((pitch_type is None and pitch_name is None) or (pitch_type is not None and pitch_name is not None)), 'exactly one of `pitch_type` or `pitch_name` must be specified'
pitch_val = pitch_type or pitch_name
pitch_col = 'pitch_type' if pitch_type else 'pitch_name'
# loc = df.sort_index().set_index(['name', pitch_col]).sort_index().loc[(player, pitch_val), ['plate_x', 'plate_z']]
loc = df.filter((pl.col('name') == player) & (pl.col(pitch_col) == pitch_val)).select(['plate_x', 'plate_z'])
fig = go.Figure()
if len(loc) >= min_pitches:
Z = fit_pred_kde(loc.to_numpy().T, X, Y)
fig.add_shape(
type="rect",
**coordinatify(sz_h, sz_w),
line_color='gray',
# fillcolor='rgba(220, 220, 220, 0.75)', #gainsboro
)
fig.add_shape(
type="rect",
**coordinatify(h_h, h_w),
line_color='dimgray',
)
fig.add_trace(go.Contour(
z=Z,
x=kde_range,
y=kde_range,
colorscale=colorscale,
zmin=1e-5,
zmax=Z.max(),
contours={
'start': 1e-5,
'end': Z.max(),
'size': Z.max() / 5
},
showscale=False
))
else:
fig.add_annotation(
x=0,
y=0,
text=f'No visualization<br>as less than {min_pitches} pitches thrown',
showarrow=False
)
fig.update_layout(
xaxis=dict(range=[-plot_s/2, plot_s/2+1], showticklabels=False),
yaxis=dict(range=[-plot_s/2, plot_s/2+1], scaleanchor='x', scaleratio=1, showticklabels=False),
# width=384,
# height=384
)
return fig
# velo distribution
def plot_pitch_velo(df=None, player=None, velos=None, pitch_type=None, pitch_name=None, min_pitches=2):
assert not ((velos is None and player is None) or (velos is not None and player is not None)), 'exactly one of `player` or `velos` must be specified'
if velos is None and player is not None:
assert not ((pitch_type is None and pitch_name is None) or (pitch_type is not None and pitch_name is not None)), 'exactly one of `pitch_type` or `pitch_name` must be specified'
assert df is not None, '`df` must be provided if `velos` not provided'
pitch_val = pitch_type or pitch_name
pitch_col = 'pitch_type' if pitch_type else 'pitch_name'
# velos = df.set_index(['name', pitch_col]).sort_index().loc[(player, pitch_val), 'release_speed']
velos = df.filter((pl.col('name') == player) & (pl.col(pitch_col) == pitch_val))['release_speed']
if isinstance(velos, int):
velos = [velos] # is this line still necessary after porting to polars?
fig = go.Figure()
if len(velos) >= min_pitches:
fig = fig.add_trace(go.Violin(x=velos, side='positive', hoveron='points', points=False, meanline_visible=True, name='Velocity Distribution'))
median = velos.median()
x_range = [median-25, median+25]
else:
fig.add_annotation(
x=(170+125)/2,
y=0.3/2,
text=f'No visualization<br>as less than {min_pitches} pitches thrown',
showarrow=False,
)
x_range = [125, 170]
fig.update_layout(
xaxis=dict(
title='Velocity',
range=x_range,
scaleratio=2
),
yaxis=dict(
title='Frequency',
range=[0, 0.3],
scaleanchor='x',
scaleratio=1,
tickvals=np.linspace(0, 0.3, 3),
ticktext=np.linspace(0, 0.3, 3),
),
autosize=True,
# width=512,
# height=256,
modebar_remove=['zoom', 'autoScale', 'resetScale'],
)
return fig
def plot_all_pitch_velo(df=None, player=None, player_df=None, pitch_counts=None, min_pitches=2):
# assert not ((player is None and player_df is None) or (player is not None and player_df is not None)), 'exactly one of `player` or `player_df` must be specified'
if player_df is None and player is not None:
assert pitch_counts is None, '`pitch_counts` must be `None` if `player_df` is None'
assert df is not None, '`df` must be provided if `player_df` is None'
# player_df = df.set_index('name').sort_index().loc[player].sort_values('pitch_name').set_index('pitch_name')
# pitch_counts = player_df.index.value_counts(ascending=True)
player_df = df.filter((pl.col('name') == player) & (pl.col('release_speed').is_not_null()))
pitch_counts = player_df['pitch_name'].value_counts().sort('count')
# league_df = df.set_index('pitch_name').sort_index()
league_df = df.filter(pl.col('release_speed').is_not_null())
fig = go.Figure()
velo_center = (player_df['release_speed'].min() + player_df['release_speed'].max()) / 2
# for i, (pitch_name, count) in enumerate(pitch_counts.items()):
for i, (pitch_name, count) in enumerate(pitch_counts.iter_rows()):
# velos = player_df.loc[pitch_name, 'release_speed']
# league_velos = league_df.loc[pitch_name, 'release_speed']
velos = player_df.filter(pl.col('pitch_name') == pitch_name)['release_speed']
league_velos = league_df.filter(pl.col('pitch_name') == pitch_name)['release_speed']
fig.add_trace(go.Violin(
x=league_velos,
y=[pitch_name]*len(league_velos),
line_color='gray',
side='positive',
orientation='h',
meanline_visible=True,
points=False,
legendgroup='NPB',
legendrank=1,
# visible='legendonly',
showlegend=False,
name='NPB',
))
if count >= min_pitches:
fig.add_trace(go.Violin(
x=velos,
y=[pitch_name]*len(velos),
side='positive',
orientation='h',
meanline_visible=True,
points=False,
legendgroup=pitch_name,
legendrank=2+(len(pitch_counts) - i),
name=pitch_name
))
else:
fig.add_trace(go.Scatter(
x=[velo_center],
y=[pitch_name],
text=[f'No visualization as less than {min_pitches} pitches thrown'],
textposition='top center',
hovertext=False,
mode="lines+text",
legendgroup=pitch_name,
legendrank=2+(len(pitch_counts) - i),
name=pitch_name,
))
fig.add_trace(go.Violin(
x=league_df['release_speed'],
y=[player]*len(league_df),
line_color='gray',
side='positive',
orientation='h',
meanline_visible=True,
points=False,
legendgroup='NPB',
legendrank=1,
# visible='legendonly',
name='NPB',
))
fig.add_trace(go.Violin(
x=player_df['release_speed'],
y=[player]*len(player_df),
side='positive',
orientation='h',
meanline_visible=True,
points=False,
legendrank=0,
name=player
))
# fig.update_xaxes(title='Velocity', range=[player_df['release_speed'].dropna().min() - 2, player_df['release_speed'].dropna().max() + 2])
fig.update_xaxes(title='Velocity', range=[player_df['release_speed'].min() - 2, player_df['release_speed'].max() + 2])
fig.update_yaxes(range=[0, len(pitch_counts)+1-0.25], visible=False)
fig.update_layout(violingap=0, violingroupgap=0, legend=dict(orientation='h', y=-0.15, yanchor='top'))
return fig
def get_data(player, handedness):
player_name = f'# {player}'
# _df = df.set_index('name').sort_index().loc[player]
# _df.to_csv(f'files/npb.csv', index=False)
# _df_by_pitch_name = _df.set_index('pitch_name').sort_index()
_df = df.filter(pl.col('name') == player)
league_df = df
_pitch_stats = pitch_stats
_league_pitch_stats = league_pitch_stats
if handedness == 'Right':
_df = _df.filter(pl.col('stand') == 'R')
league_df = league_df.filter(pl.col('stand') == 'R')
_pitch_stats = rhb_pitch_stats
_league_pitch_stats = rhb_league_pitch_stats
elif handedness == 'Left':
_df = _df.filter(pl.col('stand') == 'L')
league_df = league_df.filter(pl.col('stand') == 'L')
_pitch_stats = lhb_pitch_stats
_league_pitch_stats = lhb_league_pitch_stats
handedness = gr.update(value=handedness, interactive=True)
# usage_fig = px.pie(_df['pitch_name'], names='pitch_name')
usage_fig = px.pie(_df.select('pitch_name'), names='pitch_name')
usage_fig.update_traces(texttemplate='%{percent:.1%}', hovertemplate=f'<b>{player}</b><br>' + 'threw a <b>%{label}</b><br><b>%{percent:.1%}</b> of the time (<b>%{value}</b> pitches)')
pitch_counts = _df['pitch_name'].value_counts().sort('count', descending=True)
# pitch_velo_summary = plot_all_pitch_velo(player=player, player_df=_df_by_pitch_name, pitch_counts=pitch_counts.sort_values(ascending=True))
pitch_velo_summary = plot_all_pitch_velo(df=league_df, player=player, player_df=_df.filter(pl.col('release_speed').is_not_null()), pitch_counts=pitch_counts.sort('count', descending=False))
pitch_loc_summary = plot_pitch_map(df=_df, player=player, all_pitches=True)
pitch_groups = []
pitch_names = []
pitch_infos = []
pitch_velos = []
pitch_maps = []
# for pitch_name, count in pitch_counts.items():
for pitch_name, count in pitch_counts.iter_rows():
pitch_groups.append(gr.update(visible=True))
pitch_names.append(gr.update(value=f'### {pitch_name}', visible=True))
pitch_infos.append(gr.update(
# value=pd.DataFrame([{
# 'Whiff%': pitch_stats.loc[(player, pitch_name), 'Whiff%'].item(),
# 'CSW%': pitch_stats.loc[(player, pitch_name), 'CSW%'].item()
# }]),
value=_pitch_stats.filter((pl.col('name') == player) & (pl.col('pitch_name') == pitch_name)).select(['Whiff%', 'CSW%']),
visible=True
))
pitch_velos.append(gr.update(
# value=plot_pitch_velo(velos=_df_by_pitch_name.loc[pitch_name, 'release_speed']),
value=plot_pitch_velo(velos=_df.filter(pl.col('pitch_name') == pitch_name)['release_speed']),
visible=True
))
pitch_maps.append(gr.update(
value=plot_pitch_map(df=_df, player=player, pitch_name=pitch_name),
label='Pitch location',
visible=True
))
for _ in range(max_pitch_types - len(pitch_names)):
pitch_groups.append(gr.update(visible=False))
pitch_names.append(gr.update(value=None, visible=False))
pitch_infos.append(gr.update(value=None, visible=False))
for _ in range(max_pitch_types - len(pitch_maps)):
pitch_velos.append(gr.update(value=None, visible=False))
pitch_maps.append(gr.update(value=None, visible=False))
# velo_stats = pd.concat([pitch_stats.loc[player, 'Velocity'].rename('Avg. Velo'), league_pitch_stats['Velocity'].rename('League Avg. Velo')], join='inner', axis=1).rename_axis(['Pitch']).reset_index()
velo_stats = (
_pitch_stats
.filter(pl.col('name') == player)
.select(pl.col('pitch_name').alias('Pitch'), pl.col('Velocity').alias('Avg. Velo'), pl.col('Count'))
.join(
_league_pitch_stats.select(pl.col('pitch_name').alias('Pitch'), pl.col('Velocity').alias('League Avg. Velo')),
on='Pitch',
how='inner'
)
.sort('Count', descending=True)
.drop('Count')
)
return player_name, handedness, 'files/npb.csv', usage_fig, pitch_velo_summary, pitch_loc_summary, *pitch_groups, *pitch_names, *pitch_infos, *pitch_velos, *pitch_maps, velo_stats
|