Spaces:
Build error
Build error
File size: 7,786 Bytes
9d7970d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import pandas as pd
import numpy as np
from tqdm.auto import tqdm
import plotly.express as px
import plotly.graph_objects as go
import plotly.colors as pc
from scipy.stats import gaussian_kde
import numpy as np
import gradio as gr
from gradio_client import Client
from scipy.stats import gaussian_kde
import numpy as np
import os
import re
from translate import translate_pa_outcome, translate_pitch_outcome, jp_pitch_to_en_pitch, jp_pitch_to_pitch_code, translate_pitch_outcome, max_pitch_types
# load game data
game_df = pd.read_csv('game.csv').drop_duplicates()
assert len(game_df) == len(game_df['game_pk'].unique())
# load pa data
pa_df = []
for game_pk in tqdm(game_df['game_pk']):
pa_df.append(pd.read_csv(os.path.join('pa', f'{game_pk}.csv'), dtype={'pa_pk': str}))
pa_df = pd.concat(pa_df, axis='rows')
# load pitch data
pitch_df = []
for game_pk in tqdm(game_df['game_pk']):
pitch_df.append(pd.read_csv(os.path.join('pitch', f'{game_pk}.csv'), dtype={'pa_pk': str}))
pitch_df = pd.concat(pitch_df, axis='rows')
pitch_df
# load player data
player_df = pd.read_csv('player.csv')
player_df
# translate pa data
pa_df['_des'] = pa_df['des'].str.strip()
pa_df['des'] = pa_df['des'].str.strip()
pa_df['des_more'] = pa_df['des_more'].str.strip()
pa_df.loc[pa_df['des'].isna(), 'des'] = pa_df[pa_df['des'].isna()]['des_more']
pa_df.loc[:, 'des'] = pa_df['des'].apply(lambda item: item.split()[0] if (len(item.split()) > 1 and re.search(r'+\d+点', item)) else item)
non_home_plate_outcome = (pa_df['des'].isin(['ボール', '見逃し', '空振り'])) | (pa_df['des'].str.endswith('塁けん制'))
pa_df.loc[non_home_plate_outcome, 'des'] = pa_df.loc[non_home_plate_outcome, 'des_more']
pa_df['des'] = pa_df['des'].apply(translate_pa_outcome)
# translate pitch data
pitch_df = pitch_df[~pitch_df['pitch_name'].isna()]
pitch_df['jp_pitch_name'] = pitch_df['pitch_name']
pitch_df['pitch_name'] = pitch_df['jp_pitch_name'].apply(lambda pitch_name: jp_pitch_to_en_pitch[pitch_name])
pitch_df['pitch_type'] = pitch_df['jp_pitch_name'].apply(lambda pitch_name: jp_pitch_to_pitch_code[pitch_name])
pitch_df['description'] = pitch_df['description'].apply(lambda item: item.split()[0] if len(item.split()) > 1 else item)
pitch_df['description'] = pitch_df['description'].apply(translate_pitch_outcome)
pitch_df['release_speed'] = pitch_df['release_speed'].replace('-', np.nan)
pitch_df.loc[~pitch_df['release_speed'].isna(), 'release_speed'] = pitch_df.loc[~pitch_df['release_speed'].isna(), 'release_speed'].str.removesuffix('km/h').astype(int)
pitch_df['plate_x'] = (pitch_df['plate_x'] + 13) - 80
pitch_df['plate_z'] = 200 - (pitch_df['plate_z'] + 13) - 100
# translate player data
client = Client("Ramos-Ramos/npb_name_translator")
en_names = client.predict(
jp_names='\n'.join(player_df.name.tolist()),
api_name="/predict"
)
player_df['jp_name'] = player_df['name']
player_df['name'] = [name if name != 'nan' else np.nan for name in en_names.splitlines()]
# merge pitch and pa data
df = pd.merge(pitch_df, pa_df, 'inner', on=['game_pk', 'pa_pk'])
df = pd.merge(df, player_df.rename(columns={'player_id': 'pitcher'}), 'inner', on='pitcher')
df['whiff'] = df['description'].isin(['SS', 'K'])
df['swing'] = ~df['description'].isin(['B', 'BB', 'LS', 'inv_K', 'bunt_K', 'HBP', 'SH', 'SH E', 'SH FC', 'obstruction', 'illegal_pitch', 'defensive_interference'])
df['csw'] = df['description'].isin(['SS', 'K', 'LS', 'inv_K'])
df['normal_pitch'] = ~df['description'].isin(['obstruction', 'illegal_pitch', 'defensive_interference']) # guess
# GRADIO FUNCTIONS
def fit_pred_kde(data, X, Y):
kde = gaussian_kde(data)
return kde(np.stack((X, Y)).reshape(2, -1)).reshape(*X.shape)
plot_s = 256
sz_h = 200
sz_w = 160
h_h = 200 - 40*2
h_w = 160 - 32*2
kde_range = np.arange(-plot_s/2, plot_s/2, 1)
X, Y = np.meshgrid(
kde_range,
kde_range
)
def coordinatify(h, w):
return dict(
x0=-w/2,
y0=-h/2,
x1=w/2,
y1=h/2
)
colorscale = pc.sequential.OrRd
colorscale = [
[0, 'rgba(0, 0, 0, 0)'],
] + [
[i / (len(colorscale) - 1), color] for i, color in enumerate(colorscale)
]
def plot_pitch_map(player, pitch_type=None, pitch_name=None):
assert not ((pitch_type is None and pitch_name is None) or (pitch_type is not None and pitch_name is not None)), 'exactly one of `pitch_type` or `pitch_name` must be specified'
pitch_val = pitch_type or pitch_name
pitch_col = 'pitch_type' if pitch_type else 'pitch_name'
loc = df.set_index(['name', pitch_col]).loc[(player, pitch_val), ['plate_x', 'plate_z']]
Z = fit_pred_kde(loc.to_numpy().T, X, Y)
fig = go.Figure()
fig.add_shape(
type="rect",
**coordinatify(sz_h, sz_w),
line_color='gray',
# fillcolor='rgba(220, 220, 220, 0.75)', #gainsboro
)
fig.add_shape(
type="rect",
**coordinatify(h_h, h_w),
line_color='dimgray',
)
fig.add_trace(go.Contour(
z=Z,
x=kde_range,
y=kde_range,
colorscale=colorscale,
zmin=1e-5,
zmax=Z.max(),
contours={
'start': 1e-5,
'end': Z.max(),
'size': (Z.max() - 1e-5) / 5
},
showscale=False
))
fig.update_layout(
xaxis=dict(range=[-plot_s/2, plot_s/2+1]),
yaxis=dict(range=[-plot_s/2, plot_s/2+1], scaleanchor='x', scaleratio=1),
width=384,
height=384
)
return fig
def plot_empty_pitch_map():
fig = go.Figure()
fig.add_annotation(
x=0,
y=0,
text='No visualization<br>as less than 10 pitches thrown',
showarrow=False
)
fig.update_layout(
xaxis=dict(range=[-plot_s/2, plot_s/2+1]),
yaxis=dict(range=[-plot_s/2, plot_s/2+1], scaleanchor='x', scaleratio=1),
width=384,
height=384
)
return fig
def get_data(player):
player_name = f'# {player}'
usage_fig = px.pie(df.set_index('name').loc[player, 'pitch_name'], names='pitch_name')
usage_fig.update_traces(texttemplate='%{percent:.1%}', hovertemplate=f'<b>{player}</b><br>' + 'threw a <b>%{label}</b><br><b>%{percent:.1%}</b> of the time (<b>%{value}</b> pitches)')
pitch_counts = df.set_index('name').loc[player, 'pitch_name'].value_counts()
pitch_names = []
pitch_infos = []
pitch_maps = []
whiff_rate = df.groupby(['name', 'pitch_name'])
whiff_rate = (whiff_rate['whiff'].sum() / whiff_rate['swing'].sum() * 100).round(1).reset_index().set_index('name').loc[player].set_index('pitch_name')
csw_rate = df.groupby(['name', 'pitch_name'])
csw_rate = (csw_rate['csw'].sum() / csw_rate['normal_pitch'].sum() * 100).round(1).reset_index().set_index('name').loc[player].set_index('pitch_name')
for pitch_name, count in pitch_counts.items():
pitch_names.append(gr.update(value=f'### {pitch_name}', visible=True))
pitch_infos.append(gr.update(
value=pd.DataFrame([{
'Whiff%': whiff_rate.loc[pitch_name].item(),
'CSW%': csw_rate.loc[pitch_name].item()
}]),
# value=[
# ('Whiff%', whiff_rate.loc[pitch_name].item()),
# ('CSW%', csw_rate.loc[pitch_name].item())
# ],
visible=True
))
if count > 10:
pitch_maps.append(gr.update(value=plot_pitch_map(player, pitch_name=pitch_name), label='Pitch location', elem_id=pitch_name, elem_classes=pitch_name, visible=True))
else:
pitch_maps.append(gr.update(value=plot_empty_pitch_map(), label=pitch_name, visible=True))
for _ in range(max_pitch_types - len(pitch_names)):
pitch_names.append(gr.update(value=None, visible=False))
pitch_infos.append(gr.update(value=None, visible=False))
for _ in range(max_pitch_types - len(pitch_maps)):
pitch_maps.append(gr.update(value=None, elem_id=None, elem_classes=None, visible=False))
return player_name, usage_fig, *pitch_names, *pitch_infos, *pitch_maps
|