File size: 9,423 Bytes
9d7970d
 
 
 
 
 
cf5350e
9d7970d
26c325e
cf5350e
 
aaf4937
9d7970d
 
26c325e
9d7970d
 
 
 
26c325e
9d7970d
 
 
 
 
 
 
 
 
 
 
 
26c325e
9d7970d
 
 
 
 
 
 
 
26c325e
9d7970d
 
 
 
4318ef2
9d7970d
 
 
26c325e
 
 
 
 
 
 
 
9d7970d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26c325e
 
9d7970d
 
 
26c325e
9d7970d
 
 
 
 
 
 
 
 
 
 
26c325e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf4937
26c325e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d7970d
 
 
aaf4937
26c325e
 
 
 
 
 
13a3a28
26c325e
 
 
 
 
 
 
 
 
 
 
 
13a3a28
 
 
 
26c325e
 
 
 
 
 
 
 
 
aaf4937
 
13a3a28
aaf4937
 
 
 
 
 
 
 
13a3a28
aaf4937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13a3a28
aaf4937
 
 
 
 
 
 
 
 
 
 
13a3a28
aaf4937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13a3a28
aaf4937
 
 
9d7970d
 
 
26c325e
cf5350e
26c325e
 
 
9d7970d
 
26c325e
 
9d7970d
 
26c325e
9d7970d
 
 
26c325e
9d7970d
 
 
26c325e
 
9d7970d
 
 
 
 
26c325e
 
 
 
 
 
9d7970d
26c325e
9d7970d
 
 
26c325e
9d7970d
 
 
26c325e
 
9d7970d
13a3a28
9d7970d
cf5350e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

import plotly.express as px
import plotly.graph_objects as go
import plotly.colors as pc
from scipy.stats import gaussian_kde
import numpy as np
import pandas as pd
import gradio as gr

from translate import max_pitch_types
from data import df, pitch_stats

# GRADIO FUNCTIONS

# location maps
def fit_pred_kde(data, X, Y):
  kde = gaussian_kde(data)
  return kde(np.stack((X, Y)).reshape(2, -1)).reshape(*X.shape)


plot_s = 256
sz_h = 200
sz_w = 160
h_h = 200 - 40*2
h_w = 160 - 32*2

kde_range = np.arange(-plot_s/2, plot_s/2, 1)
X, Y = np.meshgrid(
    kde_range,
    kde_range
)


def coordinatify(h, w):
  return dict(
      x0=-w/2,
      y0=-h/2,
      x1=w/2,
      y1=h/2
  )


colorscale = pc.sequential.OrRd
colorscale = [
    [0, 'rgba(0, 0, 0, 0)'],
] + [
    [i / len(colorscale), color] for i, color in enumerate(colorscale, start=1)
]


def plot_pitch_map(player=None, loc=None, pitch_type=None, pitch_name=None):
  assert not ((loc is None and player is None) or (loc is not None and player is not None)), 'exactly one of `player` or `loc` must be specified'

  if loc is None and player is not None:
    assert not ((pitch_type is None and pitch_name is None) or (pitch_type is not None and pitch_name is not None)), 'exactly one of `pitch_type` or `pitch_name` must be specified'
    pitch_val = pitch_type or pitch_name
    pitch_col = 'pitch_type' if pitch_type else 'pitch_name'
    loc = df.set_index(['name', pitch_col]).loc[(player, pitch_val), ['plate_x', 'plate_z']]
  Z = fit_pred_kde(loc.to_numpy().T, X, Y)

  fig = go.Figure()
  fig.add_shape(
      type="rect",
      **coordinatify(sz_h, sz_w),
      line_color='gray',
      # fillcolor='rgba(220, 220, 220, 0.75)', #gainsboro
  )
  fig.add_shape(
      type="rect",
      **coordinatify(h_h, h_w),
      line_color='dimgray',
  )
  fig.add_trace(go.Contour(
      z=Z,
      x=kde_range,
      y=kde_range,
      colorscale=colorscale,
      zmin=1e-5,
      zmax=Z.max(),
      contours={
          'start': 1e-5,
          'end': Z.max(),
          'size': (Z.max() - 1e-5) / 5
      },
      showscale=False
  ))
  fig.update_layout(
    xaxis=dict(range=[-plot_s/2, plot_s/2+1]),
    yaxis=dict(range=[-plot_s/2, plot_s/2+1], scaleanchor='x', scaleratio=1),
    # width=384,
    # height=384
  )
  return fig


def plot_empty_pitch_map():
  fig = go.Figure()
  fig.add_annotation(
      x=0,
      y=0,
      text='No visualization<br>as less than 10 pitches thrown',
      showarrow=False
  )
  fig.update_layout(
    xaxis=dict(range=[-plot_s/2, plot_s/2+1]),
    yaxis=dict(range=[-plot_s/2, plot_s/2+1], scaleanchor='x', scaleratio=1),
    # width=384,
    # height=384
  )
  return fig

# velo distribution
def plot_pitch_velo(player=None, velos=None, pitch_type=None, pitch_name=None):
  assert not ((velos is None and player is None) or (velos is not None and player is not None)), 'exactly one of `player` or `loc` must be specified'

  if velos is None and player is not None:
    assert not ((pitch_type is None and pitch_name is None) or (pitch_type is not None and pitch_name is not None)), 'exactly one of `pitch_type` or `pitch_name` must be specified'
    pitch_val = pitch_type or pitch_name
    pitch_col = 'pitch_type' if pitch_type else 'pitch_name'
    velos = df.set_index(['name', pitch_col]).loc[(player, pitch_val), 'release_speed']

  fig = go.Figure(data=go.Violin(x=velos, side='positive', hoveron='points', points=False, meanline_visible=True, name='Velocity Distribution'))
  fig.update_layout(
    xaxis=dict(
        title='Velocity',
        range=[125, 170],
        scaleratio=2
    ),
    yaxis=dict(
        title='Frequency',
        range=[0, 0.3],
        scaleanchor='x',
        scaleratio=1,
        tickvals=np.linspace(0, 0.3, 3),
        ticktext=np.linspace(0, 0.3, 3),
    ),
    autosize=True,
    # width=512,
    # height=256,
    modebar_remove=['zoom', 'autoScale', 'resetScale'],
  )
  return fig


def plot_empty_pitch_velo():
  fig = go.Figure()
  fig.add_annotation(
      x=(170+125)/2,
      y=0.3/2,
      text='No visualization<br>as less than 10 pitches thrown',
      showarrow=False,
  )
  fig.update_layout(
    xaxis=dict(
        title='Velocity',
        range=[125, 170],
        scaleratio=2
    ),
    yaxis=dict(
        title='Frequency',
        range=[0, 0.3],
        scaleanchor='x',
        scaleratio=1,
        # tickvals=np.linspace(0, 0.3, 3),
        # ticktext=np.linspace(0, 0.3, 3),
        tickvals=[0.15],
        ticktext=[0.15]
    ),
    autosize=True,
    # width=512,
    # height=256,
    modebar_remove=['zoom', 'autoScale', 'resetScale'],
  )
  return fig


def plot_all_pitch_velo(player=None, player_df=None, pitch_counts=None, min_pitches=10):
  # assert not ((player is None and player_df is None) or (player is not None and player_df is not None)), 'exactly one of `player` or `player_df` must be specified'

  if player_df is None and player is not None:
    assert pitch_counts is None, '`pitch_counts` must be `None` if `player_df` is None'
    player_df = df.sort_values('name').set_index('name').loc[player].sort_values('pitch_name').set_index('pitch_name')
    pitch_counts = player_df.index.value_counts(ascending=True)

  league_df = df.set_index('pitch_name')

  fig = go.Figure()

  velo_center = (player_df['release_speed'].min() + player_df['release_speed'].max()) / 2
  for i, (pitch_name, count) in enumerate(pitch_counts.items()):
    velos = player_df.loc[pitch_name, 'release_speed']
    league_velos = league_df.loc[pitch_name, 'release_speed']
    fig.add_trace(go.Violin(
        x=league_velos,
        y=[pitch_name]*len(league_velos),
        line_color='gray',
        side='positive',
        orientation='h',
        meanline_visible=True,
        points=False,
        legendgroup='NPB',
        legendrank=1,
        # visible='legendonly',
        showlegend=False,
        name='NPB',
    ))
    if count >= min_pitches:
      fig.add_trace(go.Violin(
          x=velos,
          y=[pitch_name]*len(velos),
          side='positive',
          orientation='h',
          meanline_visible=True,
          points=False,
          legendgroup=pitch_name,
          legendrank=2+(len(pitch_counts) - i),
          name=pitch_name
      ))
    else:
      fig.add_trace(go.Scatter(
          x=[velo_center],
          y=[pitch_name],
          text=['No visualization as less than 10 pitches thrown'],
          textposition='top center',
          hovertext=False,
          mode="lines+text",
          legendgroup=pitch_name,
          legendrank=2+(len(pitch_counts) - i),
          name=pitch_name,
      ))

  fig.add_trace(go.Violin(
      x=player_df['release_speed'],
      y=[player]*len(player_df),
      side='positive',
      orientation='h',
      meanline_visible=True,
      points=False,
      legendrank=0,
      name=player
  ))
  fig.add_trace(go.Violin(
      x=league_df['release_speed'],
      y=[player]*len(league_df),
      line_color='gray',
      side='positive',
      orientation='h',
      meanline_visible=True,
      points=False,
      legendgroup='NPB',
      legendrank=1,
      # visible='legendonly',
      name='NPB',
  ))

  fig.update_xaxes(title='Velocity')

  return fig


def get_data(player):
  player_name = f'# {player}'

  _df = df.set_index('name').loc[player]
  _df.to_csv(f'files/npb.csv', index=False)
  _df_by_pitch_name = _df.set_index('pitch_name')

  usage_fig = px.pie(_df['pitch_name'], names='pitch_name')
  usage_fig.update_traces(texttemplate='%{percent:.1%}', hovertemplate=f'<b>{player}</b><br>' + 'threw a <b>%{label}</b><br><b>%{percent:.1%}</b> of the time (<b>%{value}</b> pitches)')

  pitch_counts = _df['pitch_name'].value_counts()
  pitch_groups = []
  pitch_names = []
  pitch_infos = []
  pitch_velos = []
  pitch_maps = []

  for pitch_name, count in pitch_counts.items():
    pitch_groups.append(gr.update(visible=True))
    pitch_names.append(gr.update(value=f'### {pitch_name}', visible=True))
    pitch_infos.append(gr.update(
        value=pd.DataFrame([{
            'Whiff%': pitch_stats.loc[(player, pitch_name), 'Whiff%'].item(),
            'CSW%': pitch_stats.loc[(player, pitch_name), 'CSW%'].item()
        }]),
        visible=True
    ))

    if count > 10:
      pitch_velos.append(gr.update(
          value=plot_pitch_velo(velos=_df_by_pitch_name.loc[pitch_name, 'release_speed']),
          visible=True
      ))
      pitch_maps.append(gr.update(value=plot_pitch_map(player, pitch_name=pitch_name), label='Pitch location', visible=True))

    else:
      pitch_velos.append(gr.update(value=plot_empty_pitch_velo(),visible=True ))
      pitch_maps.append(gr.update(value=plot_empty_pitch_map(), label=pitch_name, visible=True))

  for _ in range(max_pitch_types - len(pitch_names)):
    pitch_groups.append(gr.update(visible=False))
    pitch_names.append(gr.update(value=None, visible=False))
    pitch_infos.append(gr.update(value=None, visible=False))
  for _ in range(max_pitch_types - len(pitch_maps)):
    pitch_velos.append(gr.update(value=None, visible=False))
    pitch_maps.append(gr.update(value=None, visible=False))

  pitch_velo_summary = plot_all_pitch_velo(player=player, player_df=_df_by_pitch_name, pitch_counts=pitch_counts.sort_values(ascending=True))

  return player_name, 'files/npb.csv', usage_fig, *pitch_groups, *pitch_names, *pitch_infos, *pitch_velos, *pitch_maps, pitch_velo_summary