File size: 9,870 Bytes
c00ad6e
75e5ca4
c01843a
 
 
 
f576748
c00ad6e
 
 
 
 
75e5ca4
 
c00ad6e
 
7dac96a
eaf2663
c00ad6e
 
b6144a8
e5250f2
c00ad6e
 
 
 
248dee2
 
 
 
 
c01843a
 
248dee2
 
da63d73
7e1973f
 
 
 
f576748
 
248dee2
 
 
 
 
c01843a
 
248dee2
 
 
75e5ca4
f576748
75e5ca4
 
 
 
c00ad6e
 
 
 
 
75e5ca4
c00ad6e
75e5ca4
c00ad6e
 
75e5ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c00ad6e
 
b6144a8
 
c00ad6e
b6144a8
c00ad6e
75e5ca4
b6144a8
75e5ca4
 
 
 
 
 
 
 
248dee2
 
 
 
 
 
 
 
 
75e5ca4
 
da63d73
f576748
c01843a
f576748
 
 
 
 
 
c01843a
 
 
 
 
f576748
 
 
c01843a
f576748
 
 
 
c01843a
 
 
f576748
c01843a
f576748
 
 
 
 
 
 
c01843a
 
 
 
 
 
 
f576748
 
 
b6144a8
 
c01843a
 
 
f576748
 
 
c01843a
75e5ca4
 
 
c01843a
75e5ca4
 
248dee2
c01843a
248dee2
 
 
c01843a
248dee2
 
c01843a
 
c00ad6e
 
 
 
75e5ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f0527
 
75e5ca4
 
 
 
 
248dee2
 
 
 
75e5ca4
f576748
 
 
 
b6144a8
c00ad6e
f576748
 
 
b6144a8
248dee2
f576748
 
c00ad6e
f576748
 
 
 
 
c01843a
f576748
 
 
c01843a
75e5ca4
248dee2
75e5ca4
f576748
75e5ca4
 
248dee2
 
 
 
 
 
 
 
 
 
 
75e5ca4
 
c00ad6e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import gradio as gr
from gradio_calendar import Calendar
import polars as pl
import pandas as pd
import matplotlib.pyplot as plt
from plottable import Table, ColumnDefinition
from plottable.plots import circled_image

from data import df, game_df
from gradio_function import *
from css import css

import datetime

df = (
    df
    # .join(game_df, on='game_pk')
    # .with_columns(pl.col('game_date').str.to_datetime())
    .rename({
        'name': 'Name',
        'release_speed': 'KPH',
        'team': 'Team'
    })
)


def filter_pitcher_leaderboard_by_date(date, *args, **kwargs):
    day_df = df.filter(pl.col('game_date') == date)
    monday = date - datetime.timedelta(days=date.weekday())
    sunday = date + datetime.timedelta(days=6-date.weekday())
    week_df = df.filter((pl.col('game_date') >= monday) & (pl.col('game_date') <= sunday))
    daily_whiffs, daily_velos = compute_pitcher_leaderboards(day_df, *args, **kwargs)
    weekly_whiffs, weekly_velos = compute_pitcher_leaderboards(week_df, *args, **kwargs)
    return (
        f'<center><h1>Daily Leaderboard<h1><h2>{date.strftime("%B %d, %Y")}</h2><h3>{date.strftime("%A")}</h3></center>',
        f'<center><h1>Weekly Leaderboard<h1><h2>{monday.strftime("%B %d, %Y")} to {sunday.strftime("%B %d, %Y")}</h2><h3>{monday.strftime("%A")} to {sunday.strftime("%A")}</h3></center>',
        daily_whiffs.drop('Team'),
        daily_velos.drop('Team'),
        weekly_whiffs.drop('Team'),
        weekly_velos.drop('Team'),
        *plot_tables(daily_whiffs, daily_velos, 'Daily', f'{date.strftime("%B %d, %Y")}\n{date.strftime("%A")}'),
        *plot_tables(weekly_whiffs, weekly_velos, 'Weekly', f'{monday.strftime("%B %d, %Y")} to {sunday.strftime("%B %d, %Y")}\n{monday.strftime("%A")} to {sunday.strftime("%A")}'),
        gr.update(interactive=True),
        gr.update(interactive=True),
        gr.update(interactive=True),
        gr.update(interactive=True)
    )


def compute_pitcher_leaderboards(df, top_players, strict, ignore_zero_whiffs, show_rank, debug):
    # _df = df.filter(pl.col('game_date') == date)
    _df = df

    other_cols = ['Team', 'Name']
    
    if debug:
        other_cols = ['game_date'] + other_cols
        
    whiffs = (
        _df
        .group_by(['pitcher'])
        .agg(
            pl.col('whiff').sum().alias('Whiffs'),
            *[pl.col(col).first() for col in other_cols]
        )
        .select(*other_cols, 'Whiffs')
        .sort('Whiffs', descending=True)
    )
    if ignore_zero_whiffs:
        whiffs = whiffs.filter(pl.col('Whiffs') > 0)
    if len(whiffs) >top_players:
        whiffs = (
            whiffs
            .filter(pl.col('Whiffs') >= whiffs['Whiffs'][top_players])
        )
    if strict:
        whiffs = whiffs[:top_players]
    if show_rank:
        whiffs = (
            whiffs
            .with_row_index(offset=1)
            .rename({'index': 'Rank'})
        )
    
    velos = (
        _df
        .select(*other_cols, 'KPH')
        .with_columns((pl.col('KPH') / 1.609).round().cast(pl.Int16).alias('MPH'))
        .drop_nulls()
        .sort(['KPH', 'Name'], descending=[True, False])
    )
    if len(velos) > top_players:
        velos = velos.filter(pl.col('KPH') >= velos['KPH'][top_players])
    if strict:
        velos = velos[:top_players]
    if show_rank:
        velos = (
            velos
            .with_row_index(offset=1)
            .rename({'index': 'Rank'})
        )

    return whiffs, velos
    # return (
        # f'<center><h1>Daily Leaderboard<h1><h2>{date.strftime("%B %d, %Y")}</h2><h3>{date.strftime("%A")}</h3></center>',
        # whiffs,
        # velos,
        # gr.update(interactive=True),
        # gr.update(interactive=True)
    # )


def plot_tables(whiffs, velos, time_type, subheader):
    whiff_fig, whiff_ax = plt.subplots(figsize=(4, 6))

    whiffs = (
        whiffs
        .with_columns(
            pl.col('Team').map_elements(lambda team: f'assets/{team.lower()}.png', return_dtype=str)
        )
    ).to_pandas()
    if 'Rank' in whiffs.columns:
        whiffs = whiffs.set_index('Rank')
    else:
        whiffs.index = pd.Series(range(1, len(whiffs)+1), name='Rank')
    Table(
      (
        whiffs
      ),
      column_definitions=[
        ColumnDefinition(name="Rank", title="Rank", width=0.25),
        ColumnDefinition(name='Team', title='Team', width=0.25, plot_fn=circled_image, textprops={'ha': 'center'}),
        ColumnDefinition(name="Name", title="Player", textprops={'ha': 'left'}),
        ColumnDefinition(name="Whiffs", title="#", width=0.25)
      ],
      ax=whiff_ax
    )
    whiff_fig.suptitle(f'{time_type} Whiff Leaderboard\n{subheader}')

    velo_fig, velo_ax = plt.subplots(figsize=(4, 6))
    velos = (
        velos
        .with_columns(
            pl.col('Team').map_elements(lambda team: f'assets/{team.lower()}.png', return_dtype=str)
        )
    ).to_pandas()
    if 'Rank' in velos.columns:
        velos = velos.set_index('Rank')
    else:
        velos.index = pd.Series(range(1, len(velos)+1), name='Rank')
    Table(
      velos,
      column_definitions=[
        ColumnDefinition(name="Rank", title="Rank", width=0.25),
        ColumnDefinition(name='Team', title='Team', width=0.25, plot_fn=circled_image, textprops={'ha': 'center'}),
        ColumnDefinition(name="Name", title="Player", textprops={'ha': 'left'}),
        ColumnDefinition(name="KPH", title="KPH", width=0.25),
        ColumnDefinition(name='MPH', title='MPH', width=0.25)
      ],
      ax=velo_ax
    )
    velo_fig.suptitle(f'{time_type} Velocity Leaderboard\n{subheader}')
    
    return whiff_fig, velo_fig

def go_back_day(date):
    return date - datetime.timedelta(days=1)


def go_forward_day(date):
    return date + datetime.timedelta(days=1)


def go_back_week(date):
    return date - datetime.timedelta(days=7)


def go_forward_week(date):
    return date + datetime.timedelta(days=7)


def create_daily_pitcher_leaderboard():
    with gr.Blocks(
        css=css
    ) as demo:
        with gr.Row():
            # date_picker = gr.DateTime(
                # value=df['game_date'].max().strftime('%Y-%m-%d'),
                # include_time=False,
                # type='datetime',
                # label='Date',
                # scale=4
            # )
            date_picker = Calendar(
                value=df['game_date'].max().strftime('%Y-%m-%d'),
                type='datetime',
                label='Date',
                scale=2,
                min_width=50
            )
            top_players = gr.Number(10, label='# Top players', scale=1, min_width=100)
            strict = gr.Checkbox(False, label='Strict', info='Ignore ties and restrict to # top players', scale=2, min_width=100)
            ignore_zero_whiffs = gr.Checkbox(False, label='Ignore zero whiffs', info='Ignore zero whiff players if in top ranked', scale=2, min_width=100)
            show_rank = gr.Checkbox(False, label='Show rank', scale=1, min_width=100)
            debug = gr.Checkbox(False, label='Debug', info='Show dates', scale=1, min_width=100)
            search_btn = gr.Button('Search', scale=1, min_width=100)

        with gr.Row():
            prev_week_btn = gr.Button('Previous Week', interactive=False)
            prev_day_btn = gr.Button('Previous Day', interactive=False)
            next_day_btn = gr.Button('Next Day', interactive=False)
            next_week_btn = gr.Button('Next Week', interactive=False)

        with gr.Tab('Tables for viewing'):
            daily_header = gr.HTML('<center><h1>Daily Leaderboard<h1><h2 style="display: none;"></h2><h3 style="display: none;"></h3></center>')
            with gr.Row():
                daily_whiffs = gr.Dataframe(pl.DataFrame({'Name': [], 'Whiffs': []}), label='Whiffs', interactive=False, height=1000)
                daily_velos = gr.Dataframe(pl.DataFrame({'Name': [], 'KPH': [], 'MPH': []}), label='Velocity', interactive=False, height=1000)

            weekly_header = gr.HTML('<center><h1>Weekly Leaderboard<h1><h2 style="display: none;"></h2><h3 style="display: none;"></h3></center>')
            with gr.Row():
                weekly_whiffs = gr.Dataframe(pl.DataFrame({'Name': [], 'Whiffs': []}), label='Whiffs', interactive=False, height=1000)
                weekly_velos = gr.Dataframe(pl.DataFrame({'Name': [], 'KPH': [], 'MPH': []}), label='Velocity', interactive=False, height=1000)

        with gr.Tab('Tables for sharing'):
            gr.Markdown('''# Plotted leaderboards

            For easier sharing
            ''')
            with gr.Row():
                daily_whiffs_plot = gr.Plot(label='Whiffs')
                daily_velos_plot = gr.Plot(label='Velocity')

            with gr.Row():
                weekly_whiffs_plot = gr.Plot(label='Whiffs')
                weekly_velos_plot = gr.Plot(label='Velocity')
            
        search_kwargs = dict(
            fn=filter_pitcher_leaderboard_by_date,
            inputs=[date_picker, top_players, strict, ignore_zero_whiffs, show_rank, debug],
            outputs=[daily_header, weekly_header, daily_whiffs, daily_velos, weekly_whiffs, weekly_velos, daily_whiffs_plot, daily_velos_plot, weekly_whiffs_plot, weekly_velos_plot, prev_day_btn, next_day_btn, prev_week_btn, next_week_btn]
        )
        search_btn.click(**search_kwargs)
        for btn, fn in (
            (prev_day_btn, go_back_day),
            (next_day_btn, go_forward_day),
            (prev_week_btn, go_back_week),
            (next_week_btn, go_forward_week)
        ):
            (
                btn
                .click(fn, date_picker, date_picker)
                .then(**search_kwargs)
            )
        
        
        
    return demo

demo = create_daily_pitcher_leaderboard()

if __name__ == '__main__':
    # demo = create_daily_pitcher_leaderboard()
    demo.launch()