Spaces:
Build error
Build error
File size: 10,222 Bytes
cf5350e 26e0ac6 cf5350e f1f0527 cf5350e eaf2663 b5b8cda f8e2512 b5b8cda e5250f2 b5b8cda cf5350e 6a02cc9 c00ad6e 6a02cc9 4871b85 eaf2663 4871b85 b73d23f 4871b85 e5250f2 4871b85 26e0ac6 4871b85 26e0ac6 4871b85 26e0ac6 4871b85 26e0ac6 6a02cc9 cf5350e 4871b85 26e0ac6 4871b85 eaf2663 4871b85 26e0ac6 4871b85 26e0ac6 cf5350e 4871b85 26e0ac6 e5250f2 4871b85 7dac96a 4871b85 eaf2663 4871b85 cf5350e 4871b85 cf5350e 4871b85 322d477 4871b85 322d477 4871b85 322d477 26e0ac6 4871b85 e5c3583 f1f0527 e5250f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# import pandas as pd
import polars as pl
import numpy as np
# from gradio_client import Client
from tqdm.auto import tqdm
import os
import re
from seasons import SEASONS
from translate import (
translate_pa_outcome, translate_pitch_outcome,
jp_pitch_to_en_pitch, jp_pitch_to_pitch_code,
jp_team_to_en_team, jp_team_to_en_full_team,
max_pitch_types
)
def identify_bb_type(hit_type):
if hit_type in list(range(1, 10)) + list(range(40, 49)):
return 'ground_ball'
elif hit_type in list(range(58, 67))+list(range(201, 209)):
return 'line_drive'
elif hit_type in list(range(28, 31)) + list(range(55, 58)) + list(range(107, 110)) + list(range(247, 251)):
return 'fly_ball'
elif hit_type in list(range(49, 55)) + list(range(101, 107)) + list(range(242, 248)):
return 'pop_up'
elif hit_type in [31, 32]:
return None
else:
raise Exception(f'Unexpect hit_type {hit_type}')
DATA_DIR = 'data'
SEASONS = [str(season) for season in SEASONS]
game_df, pa_df, pitch_df, player_df, df = [], [], [], [], []
for season in SEASONS:
season_dir = os.path.join(DATA_DIR, season)
# load game data
_game_df = pl.read_csv(os.path.join(season_dir, 'game.csv')).unique()
assert len(_game_df) == len(_game_df['game_pk'].unique())
# load pa data
_pa_df = []
for game_pk in tqdm(_game_df['game_pk']):
_pa_df.append(pl.read_csv(os.path.join(season_dir, 'pa', f'{game_pk}.csv'), schema_overrides={'pa_pk': str}))
_pa_df = pl.concat(_pa_df)
# load pitch data
_pitch_df = []
for game_pk in tqdm(_game_df['game_pk']):
_pitch_df.append(pl.read_csv(os.path.join(season_dir, 'pitch', f'{game_pk}.csv'), schema_overrides={'pitch_id': pl.Int64, 'pitch_number': pl.Int64, 'pa_pk': str, 'on_1b': pl.Int64, 'on_2b': pl.Int64, 'on_3b': pl.Int64}))
try:
_pitch_df = pl.concat(_pitch_df)
except:
rows = []
for __pitch_df in _pitch_df:
row = dict(zip(__pitch_df.columns, __pitch_df.dtypes))
print(row)
rows.append(row)
print(pl.DataFrame(rows))
# load player data
_player_df = pl.read_csv(os.path.join(season_dir, 'player.csv'))
# translate game data
_game_df = (
_game_df
.with_columns(
pl.col('home_team').alias('jp_home_team'),
pl.col('away_team').alias('jp_away_team')
)
.with_columns(
pl.col('home_team').replace_strict(jp_team_to_en_team),
pl.col('home_team').replace_strict(jp_team_to_en_full_team).alias('full_home_team'),
pl.col('away_team').replace_strict(jp_team_to_en_team),
pl.col('away_team').replace_strict(jp_team_to_en_full_team).alias('full_away_team')
)
)
# translate pa data
_pa_df = (
_pa_df
.with_columns(
pl.col('des').str.strip_chars().alias('_des'),
pl.col('des').str.strip_chars(),
pl.col('des_more').str.strip_chars()
)
.with_columns(
pl.col('des').fill_null(pl.col('des_more'))
)
.with_columns(
pl.when(
(pl.col('des').str.split(' ').list.len() > 1) &
(pl.col('des').str.contains(r'+\d+点'))
)
.then(pl.col('des').str.split(' ').list.first())
.otherwise(pl.col('des'))
.alias('des')
)
.with_columns(
pl.when(
pl.col('des').is_in(['ボール', '見逃し', '空振り']) |
pl.col('des').str.ends_with('塁けん制')
)
.then(
pl.col('des_more')
)
.otherwise(
pl.col('des')
)
.alias('des')
)
.with_columns(
pl.col('des').map_elements(translate_pa_outcome, return_dtype=str)
)
.with_columns(
pl.col('bb_type').alias('hit_type').str.strip_prefix('dakyu').cast(int).alias('hit_type')
)
.with_columns(
pl.col('hit_type').map_elements(lambda hit_type: identify_bb_type(hit_type), return_dtype=str).alias('bb_type')
)
)
# translate pitch data
_pitch_df = (
_pitch_df
.filter(pl.col('pitch_name').is_not_null())
.with_columns(
pl.col('pitch_name').alias('jp_pitch_name')
)
.with_columns(
# pl.col('jp_pitch_name').map_elements(lambda pitch_name: jp_pitch_to_en_pitch[pitch_name], return_dtype=str).alias('pitch_name'),
pl.col('jp_pitch_name').replace_strict(jp_pitch_to_en_pitch).alias('pitch_name'),
# pl.col('jp_pitch_name').map_elements(lambda pitch_name: jp_pitch_to_pitch_code[pitch_name], return_dtype=str).alias('pitch_type'),
pl.col('jp_pitch_name').replace_strict(jp_pitch_to_pitch_code).alias('pitch_type'),
pl.col('description').str.split(' ').list.first().map_elements(translate_pitch_outcome, return_dtype=str),
pl.when(
pl.col('release_speed') != '-'
)
.then(
pl.col('release_speed').str.strip_suffix('km/h')
)
.otherwise(
None
)
.alias('release_speed'),
((pl.col('plate_x') + 13) - 80).alias('plate_x'),
(200 - (pl.col('plate_z') + 13) - 100).alias('plate_z'),
)
.with_columns(
pl.col('release_speed').cast(int), # idk why I can't do this during the strip_suffix step
)
)
# translate player data
register = (
pl.read_csv(os.path.join(season_dir, 'register.csv'))
.with_columns(
pl.col('en_name').str.replace(',', '').alias('en_name'),
)
.select(
pl.col('en_name'),
pl.col('jp_team').alias('team'),
pl.col('jp_name').alias('name')
)
)
_player_df = (
_player_df
.join(register, on=['name', 'team'], how='inner')
.with_columns(
pl.col('en_name').alias('name'),
pl.col('team').alias('jp_team')
)
.with_columns(
pl.col('jp_team').replace_strict(jp_team_to_en_team).alias('team'),
pl.col('jp_team').replace_strict(jp_team_to_en_full_team).alias('full_team'),
)
.drop(pl.col('en_name'))
)
# merge pitch and pa data
_df = (
(
_pitch_df
.join(_pa_df, on=['game_pk', 'pa_pk'], how='inner')
.join(_player_df.rename({'player_id': 'pitcher'}), on='pitcher', how='inner')
.join(_game_df, on=['game_pk'])
)
.with_columns(
pl.col('description').is_in(['SS', 'K']).alias('whiff'),
~pl.col('description').is_in(['B', 'BB', 'LS', 'inv_K', 'bunt_K', 'HBP', 'SH', 'SH E', 'SH FC', 'obstruction', 'illegal_pitch', 'defensive_interference']).alias('swing'),
pl.col('description').is_in(['SS', 'K', 'LS', 'inv_K']).alias('csw'),
~pl.col('description').is_in(['obstruction', 'illegal_pitch', 'defensive_interference']).alias('normal_pitch'), # guess
pl.col('game_date').str.to_datetime()
)
).sort(['game_pk', 'pa_pk', 'pitch_id'])
# add players to pa_df
# unfortunately we have pas that don't show up in the pitch data, so this would be useful for
_pa_df = _pa_df.join(_player_df.rename({'player_id': 'pitcher'}), on='pitcher', how='inner')
# add season dfs to main dfs
game_df.append(_game_df)
pa_df.append(_pa_df)
pitch_df.append(_pitch_df)
player_df.append(_player_df)
df.append(_df)
def compare(list_0, list_1):
print(f'In 0 but not in 1: {[item for item in list_0 if item not in list_1]}')
print(f'In 1 but not in 0: {[item for item in list_1 if item not in list_0]}')
# combine all season dfs
game_df = pl.concat(game_df)
try:
pa_df = pl.concat(pa_df)
except Exception as _:
print('pa_df')
compare(*[_pa_df.columns for _pa_df in pa_df])
try:
pitch_df = pl.concat(pitch_df)
except Exception as _:
print('pitch_df')
compare(*[_pitch_df.columns for _pitch_df in pitch_df])
player_df = pl.concat(player_df).unique()
try:
df = pl.concat(df)
except Exception as _:
print('df')
compare(*[_df.columns for _df in df])
assert len(_game_df) == len(_game_df['game_pk'].unique())
# pitch_stats, rhb_pitch_stats, lhb_pitch_stats = [
# (
# _df
# .group_by(['name', 'pitch_name'])
# .agg(
# ((pl.col('whiff').sum() / pl.col('swing').sum()) * 100).round(1).alias('Whiff%'),
# ((pl.col('csw').sum() / pl.col('normal_pitch').sum()) * 100).round(1).alias('CSW%'),
# pl.col('release_speed').mean().round(1).alias('Velocity'),
# pl.len().alias('Count')
# )
# .sort(['name', 'Count'], descending=[False, True])
# # .rename({'name': 'Player', 'pitch_name': 'Pitch'})
# )
# for _df
# in (
# df,
# df.filter(pl.col('stand') == 'R'),
# df.filter(pl.col('stand') == 'L'),
# )
# ]
# league_pitch_stats, rhb_league_pitch_stats, lhb_league_pitch_stats = [
# _df.group_by('pitch_name').agg(pl.col('release_speed').mean().round(1).alias('Velocity'))
# for _df
# in (
# df,
# df.filter(pl.col('stand') == 'R'),
# df.filter(pl.col('stand') == 'L'),
# )
# ]
def compute_pitch_stats(df):
pitch_stats = (
df
.group_by(['name', 'pitch_name'])
.agg(
((pl.col('whiff').sum() / pl.col('swing').sum()) * 100).round(1).alias('Whiff%'),
((pl.col('csw').sum() / pl.col('normal_pitch').sum()) * 100).round(1).alias('CSW%'),
pl.col('release_speed').mean().round(1).alias('Velocity'),
pl.len().alias('Count')
)
.sort(['name', 'Count'], descending=[False, True])
)
return pitch_stats
pitch_stats = compute_pitch_stats(df)
def compute_league_pitch_stats(df):
return df.group_by('pitch_name').agg(pl.col('release_speed').mean().round(1).alias('Velocity'))
league_pitch_stats = compute_league_pitch_stats(df)
if __name__ == '__main__':
print(df.shape)
print(df.columns)
breakpoint()
|