import pandas as pd import numpy as np from tqdm.auto import tqdm import plotly.express as px import plotly.graph_objects as go import plotly.colors as pc from scipy.stats import gaussian_kde import numpy as np import gradio as gr from gradio_client import Client from scipy.stats import gaussian_kde import numpy as np import os import re from translate import translate_pa_outcome, translate_pitch_outcome, jp_pitch_to_en_pitch, jp_pitch_to_pitch_code, translate_pitch_outcome, max_pitch_types # load game data game_df = pd.read_csv('game.csv').drop_duplicates() assert len(game_df) == len(game_df['game_pk'].unique()) # load pa data pa_df = [] for game_pk in tqdm(game_df['game_pk']): pa_df.append(pd.read_csv(os.path.join('pa', f'{game_pk}.csv'), dtype={'pa_pk': str})) pa_df = pd.concat(pa_df, axis='rows') # load pitch data pitch_df = [] for game_pk in tqdm(game_df['game_pk']): pitch_df.append(pd.read_csv(os.path.join('pitch', f'{game_pk}.csv'), dtype={'pa_pk': str})) pitch_df = pd.concat(pitch_df, axis='rows') pitch_df # load player data player_df = pd.read_csv('player.csv') player_df # translate pa data pa_df['_des'] = pa_df['des'].str.strip() pa_df['des'] = pa_df['des'].str.strip() pa_df['des_more'] = pa_df['des_more'].str.strip() pa_df.loc[pa_df['des'].isna(), 'des'] = pa_df[pa_df['des'].isna()]['des_more'] pa_df.loc[:, 'des'] = pa_df['des'].apply(lambda item: item.split()[0] if (len(item.split()) > 1 and re.search(r'+\d+点', item)) else item) non_home_plate_outcome = (pa_df['des'].isin(['ボール', '見逃し', '空振り'])) | (pa_df['des'].str.endswith('塁けん制')) pa_df.loc[non_home_plate_outcome, 'des'] = pa_df.loc[non_home_plate_outcome, 'des_more'] pa_df['des'] = pa_df['des'].apply(translate_pa_outcome) # translate pitch data pitch_df = pitch_df[~pitch_df['pitch_name'].isna()] pitch_df['jp_pitch_name'] = pitch_df['pitch_name'] pitch_df['pitch_name'] = pitch_df['jp_pitch_name'].apply(lambda pitch_name: jp_pitch_to_en_pitch[pitch_name]) pitch_df['pitch_type'] = pitch_df['jp_pitch_name'].apply(lambda pitch_name: jp_pitch_to_pitch_code[pitch_name]) pitch_df['description'] = pitch_df['description'].apply(lambda item: item.split()[0] if len(item.split()) > 1 else item) pitch_df['description'] = pitch_df['description'].apply(translate_pitch_outcome) pitch_df['release_speed'] = pitch_df['release_speed'].replace('-', np.nan) pitch_df.loc[~pitch_df['release_speed'].isna(), 'release_speed'] = pitch_df.loc[~pitch_df['release_speed'].isna(), 'release_speed'].str.removesuffix('km/h').astype(int) pitch_df['plate_x'] = (pitch_df['plate_x'] + 13) - 80 pitch_df['plate_z'] = 200 - (pitch_df['plate_z'] + 13) - 100 # translate player data client = Client("Ramos-Ramos/npb_name_translator") en_names = client.predict( jp_names='\n'.join(player_df.name.tolist()), api_name="/predict" ) player_df['jp_name'] = player_df['name'] player_df['name'] = [name if name != 'nan' else np.nan for name in en_names.splitlines()] # merge pitch and pa data df = pd.merge(pitch_df, pa_df, 'inner', on=['game_pk', 'pa_pk']) df = pd.merge(df, player_df.rename(columns={'player_id': 'pitcher'}), 'inner', on='pitcher') df['whiff'] = df['description'].isin(['SS', 'K']) df['swing'] = ~df['description'].isin(['B', 'BB', 'LS', 'inv_K', 'bunt_K', 'HBP', 'SH', 'SH E', 'SH FC', 'obstruction', 'illegal_pitch', 'defensive_interference']) df['csw'] = df['description'].isin(['SS', 'K', 'LS', 'inv_K']) df['normal_pitch'] = ~df['description'].isin(['obstruction', 'illegal_pitch', 'defensive_interference']) # guess # GRADIO FUNCTIONS def fit_pred_kde(data, X, Y): kde = gaussian_kde(data) return kde(np.stack((X, Y)).reshape(2, -1)).reshape(*X.shape) plot_s = 256 sz_h = 200 sz_w = 160 h_h = 200 - 40*2 h_w = 160 - 32*2 kde_range = np.arange(-plot_s/2, plot_s/2, 1) X, Y = np.meshgrid( kde_range, kde_range ) def coordinatify(h, w): return dict( x0=-w/2, y0=-h/2, x1=w/2, y1=h/2 ) colorscale = pc.sequential.OrRd colorscale = [ [0, 'rgba(0, 0, 0, 0)'], ] + [ [i / (len(colorscale) - 1), color] for i, color in enumerate(colorscale) ] def plot_pitch_map(player, pitch_type=None, pitch_name=None): assert not ((pitch_type is None and pitch_name is None) or (pitch_type is not None and pitch_name is not None)), 'exactly one of `pitch_type` or `pitch_name` must be specified' pitch_val = pitch_type or pitch_name pitch_col = 'pitch_type' if pitch_type else 'pitch_name' loc = df.set_index(['name', pitch_col]).loc[(player, pitch_val), ['plate_x', 'plate_z']] Z = fit_pred_kde(loc.to_numpy().T, X, Y) fig = go.Figure() fig.add_shape( type="rect", **coordinatify(sz_h, sz_w), line_color='gray', # fillcolor='rgba(220, 220, 220, 0.75)', #gainsboro ) fig.add_shape( type="rect", **coordinatify(h_h, h_w), line_color='dimgray', ) fig.add_trace(go.Contour( z=Z, x=kde_range, y=kde_range, colorscale=colorscale, zmin=1e-5, zmax=Z.max(), contours={ 'start': 1e-5, 'end': Z.max(), 'size': (Z.max() - 1e-5) / 5 }, showscale=False )) fig.update_layout( xaxis=dict(range=[-plot_s/2, plot_s/2+1]), yaxis=dict(range=[-plot_s/2, plot_s/2+1], scaleanchor='x', scaleratio=1), width=384, height=384 ) return fig def plot_empty_pitch_map(): fig = go.Figure() fig.add_annotation( x=0, y=0, text='No visualization
as less than 10 pitches thrown', showarrow=False ) fig.update_layout( xaxis=dict(range=[-plot_s/2, plot_s/2+1]), yaxis=dict(range=[-plot_s/2, plot_s/2+1], scaleanchor='x', scaleratio=1), width=384, height=384 ) return fig def get_data(player): player_name = f'# {player}' usage_fig = px.pie(df.set_index('name').loc[player, 'pitch_name'], names='pitch_name') usage_fig.update_traces(texttemplate='%{percent:.1%}', hovertemplate=f'{player}
' + 'threw a %{label}
%{percent:.1%} of the time (%{value} pitches)') pitch_counts = df.set_index('name').loc[player, 'pitch_name'].value_counts() pitch_names = [] pitch_infos = [] pitch_maps = [] whiff_rate = df.groupby(['name', 'pitch_name']) whiff_rate = (whiff_rate['whiff'].sum() / whiff_rate['swing'].sum() * 100).round(1).reset_index().set_index('name').loc[player].set_index('pitch_name') csw_rate = df.groupby(['name', 'pitch_name']) csw_rate = (csw_rate['csw'].sum() / csw_rate['normal_pitch'].sum() * 100).round(1).reset_index().set_index('name').loc[player].set_index('pitch_name') for pitch_name, count in pitch_counts.items(): pitch_names.append(gr.update(value=f'### {pitch_name}', visible=True)) pitch_infos.append(gr.update( value=pd.DataFrame([{ 'Whiff%': whiff_rate.loc[pitch_name].item(), 'CSW%': csw_rate.loc[pitch_name].item() }]), # value=[ # ('Whiff%', whiff_rate.loc[pitch_name].item()), # ('CSW%', csw_rate.loc[pitch_name].item()) # ], visible=True )) if count > 10: pitch_maps.append(gr.update(value=plot_pitch_map(player, pitch_name=pitch_name), label='Pitch location', elem_id=pitch_name, elem_classes=pitch_name, visible=True)) else: pitch_maps.append(gr.update(value=plot_empty_pitch_map(), label=pitch_name, visible=True)) for _ in range(max_pitch_types - len(pitch_names)): pitch_names.append(gr.update(value=None, visible=False)) pitch_infos.append(gr.update(value=None, visible=False)) for _ in range(max_pitch_types - len(pitch_maps)): pitch_maps.append(gr.update(value=None, elem_id=None, elem_classes=None, visible=False)) return player_name, usage_fig, *pitch_names, *pitch_infos, *pitch_maps