DharGPT-Demo / app.py
RandomNameAnd6's picture
Update app.py
42f2a5e verified
raw
history blame
4.56 kB
import os
os.system("pip install -q gradio torch transformers")
os.system('pip install --no-deps xformers "trl<0.9.0" peft accelerate bitsandbytes')
import gradio as gr
import torch
import random
from transformers import AutoTokenizer, AutoModelForCausalLM
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
model, tokenizer = AutoModelForCausalLM.from_pretrained(
model_name = "Qwen/Qwen2-1.5B",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit
)
model = PeftModel.from_pretrained(model, "RandomNameAnd6/Phi-3-Mini-Dhar-Mann-Adapters-BOS")
def generate_text(prompt):
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=48, temperature=0.85, do_sample=True)
text = tokenizer.decode(output[0], skip_special_tokens=True)
return text
# Read real titles from file
with open('dhar_mann_titles.txt', 'r') as file:
dhar_mann_titles = file.readlines()
# Function to generate an AI title (dummy implementation)
def generate_ai_title():
inputs = tokenizer(["<|startoftext|>"]*1, return_tensors = "pt")
outputs = model.generate(**inputs, max_new_tokens=50, use_cache=True, temperature=0.85, do_sample=True)
return (tokenizer.batch_decode(outputs)[0])[15:-13]
# Function to check user's answer and update score
def check_answer(user_choice, real_index, option1, option2, score):
if (user_choice == "Option 1" and real_index == 0) or (user_choice == "Option 2" and real_index == 1):
score += 1
return f"Correct! Your current score is: {score}", score, gr.update(visible=True), gr.update(visible=False)
else:
score = 0
return f"Incorrect. Your score has been reset to: {score}", score, gr.update(visible=False), gr.update(visible=True)
# Function to update options
def update_options():
real_index = random.choice([0, 1])
real_title = random.choice(dhar_mann_titles).strip()
ai_title = generate_ai_title()
if real_index == 0:
return real_title, ai_title, real_index
else:
return ai_title, real_title, real_index
def create_interface():
with gr.Blocks() as demo:
score = gr.State(0)
real_index_state = gr.State(0)
score_display = gr.Markdown("## Real or AI - Dhar Mann\n**Current Score: 0**")
with gr.Row():
with gr.Column():
gr.Markdown("### Option 1")
option1_box = gr.Markdown("")
with gr.Column():
gr.Markdown("### Option 2")
option2_box = gr.Markdown("")
with gr.Row():
choice = gr.Radio(["Option 1", "Option 2"], label="Which one do you think is real?")
submit_button = gr.Button("Submit")
result_text = gr.Markdown("")
continue_button = gr.Button("Continue", visible=False)
restart_button = gr.Button("Restart", visible=False)
def on_submit(user_choice, option1, option2, real_index, score):
result, new_score, continue_visibility, restart_visibility = check_answer(user_choice, real_index, option1, option2, score)
return result, new_score, continue_visibility, restart_visibility
def on_continue(score):
option1, option2, real_index = update_options()
new_score_display = f"## Real or AI - Dhar Mann\n**Current Score: {score}**"
return option1, option2, real_index, new_score_display, gr.update(value=None), "", gr.update(visible=False), gr.update(visible=False)
def on_restart():
return on_continue(0)
# Initialize options
option1, option2, real_index = update_options()
submit_button.click(on_submit, inputs=[choice, option1_box, option2_box, real_index_state, score], outputs=[result_text, score, continue_button, restart_button])
continue_button.click(on_continue, inputs=score, outputs=[option1_box, option2_box, real_index_state, score_display, choice, result_text, continue_button, restart_button])
restart_button.click(on_restart, outputs=[option1_box, option2_box, real_index_state, score_display, choice, result_text, continue_button, restart_button])
# Set initial content for option boxes
option1_box.value = option1
option2_box.value = option2
return demo
demo = create_interface()
demo.launch()