RandomNameAnd6 commited on
Commit
6accb82
·
verified ·
1 Parent(s): b4c48e8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -4
app.py CHANGED
@@ -1,14 +1,26 @@
1
  import os
2
- os.system("pip install torch gradio transformers")
 
 
3
 
4
  import gradio as gr
5
  import torch
6
  import random
7
- from transformers import GPT2Tokenizer, GPT2LMHeadModel
 
8
 
 
 
 
9
 
10
- tokenizer = GPT2Tokenizer.from_pretrained("gpt2-medium")
11
- model = GPT2LMHeadModel.from_pretrained("RandomNameAnd6/DharGPT-Small")
 
 
 
 
 
 
12
 
13
  def generate_text(prompt):
14
  input_ids = tokenizer.encode(prompt, return_tensors="pt")
 
1
  import os
2
+ os.system("pip install -q gradio")
3
+ os.system('pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"')
4
+ os.system('pip install --no-deps xformers "trl<0.9.0" peft accelerate bitsandbytes')
5
 
6
  import gradio as gr
7
  import torch
8
  import random
9
+ from unsloth import FastLanguageModel
10
+ from peft import PeftModel
11
 
12
+ max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
13
+ dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
14
+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
15
 
16
+ model, tokenizer = FastLanguageModel.from_pretrained(
17
+ model_name = "Qwen/Qwen2-1.5B",
18
+ max_seq_length = max_seq_length,
19
+ dtype = dtype,
20
+ load_in_4bit = load_in_4bit
21
+ )
22
+
23
+ model = PeftModel.from_pretrained(model, "RandomNameAnd6/Phi-3-Mini-Dhar-Mann-Adapters-BOS")
24
 
25
  def generate_text(prompt):
26
  input_ids = tokenizer.encode(prompt, return_tensors="pt")