import os os.system("pip install gradio transformers") import gradio as gr import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained("RandomNameAnd6/DharGPT-Tokenizer") model = GPT2LMHeadModel.from_pretrained("RandomNameAnd6/DharGPT").eval() def generate_text(prompt): input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, max_length=512, temperature=0.9, do_sample=True) text = tokenizer.decode(output[0], skip_special_tokens=True) return text demo = gr.Interface(fn=generate_text, inputs="text", outputs="text", live=True) demo.launch()