Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,88 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from transformers import ViTForImageClassification, ViTFeatureExtractor
|
6 |
+
from transformers import Trainer, TrainingArguments
|
7 |
+
from datasets import load_dataset, Dataset
|
8 |
|
9 |
+
# Function to load images from specified folders
|
10 |
+
def load_images_from_folders(folders, label):
|
11 |
+
images = []
|
12 |
+
labels = []
|
13 |
+
for folder in folders:
|
14 |
+
for filename in os.listdir(folder):
|
15 |
+
if filename.lower().endswith(('.png', '.jpg', '.jpeg')): # Check for valid image extensions
|
16 |
+
img = cv2.imread(os.path.join(folder, filename), cv2.IMREAD_GRAYSCALE) # Read image as grayscale
|
17 |
+
if img is not None:
|
18 |
+
img = cv2.resize(img, (224, 224)) # Resize to 224x224 pixels
|
19 |
+
img = img.astype(np.float32) # Ensure the image is in float32 format
|
20 |
+
img /= 255.0 # Normalize to [0, 1]
|
21 |
+
images.append(img)
|
22 |
+
labels.append(label)
|
23 |
+
else:
|
24 |
+
print(f"Failed to load image: {filename}")
|
25 |
+
return images, labels
|
26 |
|
27 |
+
# Load normal and pneumonia images
|
28 |
+
normal_folders = [
|
29 |
+
os.path.join('chest-xray-pneumonia', 'chest_xray', 'test', 'NORMAL'),
|
30 |
+
os.path.join('chest-xray-pneumonia', 'chest_xray', 'train', 'NORMAL'),
|
31 |
+
os.path.join('chest-xray-pneumonia', 'chest_xray', 'val', 'NORMAL'),
|
32 |
+
]
|
33 |
+
pneumonia_folders = [
|
34 |
+
os.path.join('chest-xray-pneumonia', 'chest_xray', 'test', 'PNEUMONIA'),
|
35 |
+
os.path.join('chest-xray-pneumonia', 'chest_xray', 'train', 'PNEUMONIA'),
|
36 |
+
os.path.join('chest-xray-pneumonia', 'chest_xray', 'val', 'PNEUMONIA'),
|
37 |
+
]
|
38 |
|
39 |
+
normal_images, normal_labels = load_images_from_folders(normal_folders, 0)
|
40 |
+
pneumonia_images, pneumonia_labels = load_images_from_folders(pneumonia_folders, 1)
|
41 |
+
|
42 |
+
# Combine images and labels
|
43 |
+
images = normal_images + pneumonia_images
|
44 |
+
labels = normal_labels + pneumonia_labels
|
45 |
+
|
46 |
+
# Split the dataset into training and testing sets
|
47 |
+
X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)
|
48 |
+
|
49 |
+
# Convert the dataset to a Hugging Face Dataset
|
50 |
+
train_dataset = Dataset.from_dict({"image": X_train, "label": y_train})
|
51 |
+
test_dataset = Dataset.from_dict({"image": X_test, "label": y_test})
|
52 |
+
|
53 |
+
# Load feature extractor and model
|
54 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
55 |
+
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=2)
|
56 |
+
|
57 |
+
# Preprocess the dataset
|
58 |
+
def preprocess_function(examples):
|
59 |
+
return feature_extractor(images=examples['image'], return_tensors="pt")
|
60 |
+
|
61 |
+
train_dataset = train_dataset.map(preprocess_function, batched=True)
|
62 |
+
test_dataset = test_dataset.map(preprocess_function, batched=True)
|
63 |
+
|
64 |
+
# Training arguments
|
65 |
+
training_args = TrainingArguments(
|
66 |
+
output_dir='./results',
|
67 |
+
evaluation_strategy='epoch',
|
68 |
+
learning_rate=2e-5,
|
69 |
+
per_device_train_batch_size=8,
|
70 |
+
per_device_eval_batch_size=8,
|
71 |
+
num_train_epochs=10,
|
72 |
+
weight_decay=0.01,
|
73 |
+
)
|
74 |
+
|
75 |
+
# Trainer
|
76 |
+
trainer = Trainer(
|
77 |
+
model=model,
|
78 |
+
args=training_args,
|
79 |
+
train_dataset=train_dataset,
|
80 |
+
eval_dataset=test_dataset,
|
81 |
+
)
|
82 |
+
|
83 |
+
# Train the model
|
84 |
+
trainer.train()
|
85 |
+
|
86 |
+
# Save the model
|
87 |
+
model.save_pretrained('./pneumonia_model_final')
|
88 |
+
print("Model saved as './pneumonia_model_final'")
|