|
import io |
|
import matplotlib.pyplot as plt |
|
import requests |
|
import inflect |
|
from PIL import Image |
|
def render_results_in_image(in_pil_img, in_results): |
|
plt.figure(figsize=(16, 10)) |
|
plt.imshow(in_pil_img) |
|
|
|
ax = plt.gca() |
|
|
|
for prediction in in_results: |
|
|
|
x, y = prediction['box']['xmin'], prediction['box']['ymin'] |
|
w = prediction['box']['xmax'] - prediction['box']['xmin'] |
|
h = prediction['box']['ymax'] - prediction['box']['ymin'] |
|
|
|
ax.add_patch(plt.Rectangle((x, y), |
|
w, |
|
h, |
|
fill=False, |
|
color="green", |
|
linewidth=2)) |
|
ax.text( |
|
x, |
|
y, |
|
f"{prediction['label']}: {round(prediction['score']*100, 1)}%", |
|
color='red' |
|
) |
|
|
|
plt.axis("off") |
|
|
|
|
|
img_buf = io.BytesIO() |
|
plt.savefig(img_buf, format='png', |
|
bbox_inches='tight', |
|
pad_inches=0) |
|
img_buf.seek(0) |
|
modified_image = Image.open(img_buf) |
|
|
|
|
|
plt.close() |
|
|
|
return modified_image |
|
|