Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
2 |
+
from transformers import pipeline
|
3 |
+
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
4 |
+
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
5 |
+
#Create Named Entity Recognition Pipeline
|
6 |
+
nerp = pipeline("ner", model=model, tokenizer=tokenizer)
|
7 |
+
#Build the Named Entity Recognition App
|
8 |
+
import gradio as gr
|
9 |
+
#Import Merging Tokens function from Helper to Display Output Relevant for User
|
10 |
+
from helper import merge_tokens
|
11 |
+
#Define Named Entity Recognition Function
|
12 |
+
def ner(input):
|
13 |
+
output = nerp(input)
|
14 |
+
merged_tokens = merge_tokens(output)
|
15 |
+
return {"text": input, "entities": merged_tokens}
|
16 |
+
#Set up the User Interface and Launch
|
17 |
+
nerapp = gr.Interface(fn=ner,
|
18 |
+
inputs=[gr.Textbox(label="Text to find entities", lines=2)],
|
19 |
+
outputs=[gr.HighlightedText(label="Text with entities")],
|
20 |
+
title="NER with dslim/bert-base-NER",
|
21 |
+
description="Find entities using the `dslim/bert-base-NER` ",
|
22 |
+
allow_flagging="never",
|
23 |
+
examples=["My name is Ranjith, I love AI and I live in Chennai", "My name is Akshay, I live in Germany and work at Cocacola"])
|
24 |
+
|
25 |
+
nerapp.launch()
|