from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER") model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER") #Create Named Entity Recognition Pipeline nerp = pipeline("ner", model=model, tokenizer=tokenizer) #Build the Named Entity Recognition App import gradio as gr #Import Merging Tokens function from Helper to Display Output Relevant for User from helper import merge_tokens #Define Named Entity Recognition Function def ner(input): output = nerp(input) merged_tokens = merge_tokens(output) return {"text": input, "entities": merged_tokens} #Set up the User Interface and Launch nerapp = gr.Interface(fn=ner, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` ", allow_flagging="never", examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace"]) nerapp.launch()