|
import torchvision |
|
import torch |
|
from torch.utils.data import Dataset |
|
from torch.nn.utils.rnn import pad_sequence |
|
|
|
class AddGaussianNoise(object): |
|
def __init__(self, mean=0., std=1., thresh=0.2): |
|
self.mean = mean |
|
self.std = std |
|
self.thresh = thresh |
|
|
|
def __call__(self, tensor): |
|
noise = torch.zeros_like(tensor) |
|
noise[tensor>self.thresh] = 1 |
|
noise *= torch.randn(tensor.size()) * self.std + self.mean |
|
return tensor + noise |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ + f'(mean={self.mean}, std={self.std})' |
|
|
|
|
|
class TextProcessor: |
|
def __init__(self, alphabet): |
|
self.alphabet = alphabet |
|
self.pad_token = "[PAD]" |
|
self.stoi = {s: i for i, s in enumerate(self.alphabet,1)} |
|
self.stoi[self.pad_token] = 0 |
|
self.itos = {i: s for s, i in self.stoi.items()} |
|
|
|
def encode(self, label): |
|
return [self.stoi[s] for s in label] |
|
|
|
def decode(self, ids): |
|
return ''.join([self.itos[i] for i in ids]) |
|
|
|
def __len__(self): |
|
return len(self.alphabet) + 1 |
|
|
|
transform_train = torchvision.transforms.Compose( |
|
[ |
|
torchvision.transforms.Grayscale(), |
|
torchvision.transforms.ToTensor(), |
|
torchvision.transforms.RandomApply([ |
|
torchvision.transforms.RandomAdjustSharpness(sharpness_factor=80), |
|
AddGaussianNoise(mean=1, std=0.005, thresh=0.3), |
|
]) |
|
] |
|
) |
|
|
|
transform_eval = torchvision.transforms.Compose( |
|
[ |
|
torchvision.transforms.Grayscale(), |
|
torchvision.transforms.ToTensor() |
|
] |
|
) |
|
|
|
class CRNNDataset(Dataset): |
|
def __init__( |
|
self, |
|
height, |
|
text_processor:TextProcessor, |
|
transforms:torchvision.transforms, |
|
dataset=None |
|
) -> None: |
|
super().__init__() |
|
|
|
self.height = height |
|
self.transform = transforms |
|
self.dataset = dataset |
|
|
|
self.text_processor = text_processor |
|
|
|
def __len__(self): |
|
return len(self.dataset) |
|
|
|
def __getitem__(self, idx): |
|
dset = self.dataset[idx] |
|
image, text = dset['image'], dset['text'] |
|
label = torch.tensor(self.text_processor.encode(text), dtype=torch.long) |
|
original_width, original_height = image.size |
|
new_width = int(self.height * original_width / original_height) |
|
image = image.resize((new_width, self.height)) |
|
image = self.transform(image) |
|
return image, label |
|
|
|
|
|
def collate_fn(batch): |
|
images, labels = zip(*batch) |
|
|
|
max_h = max(img.size(1) for img in images) |
|
max_w = max(img.size(2) for img in images) |
|
|
|
padded_images = [] |
|
|
|
for img in images: |
|
h, w = img.size(1), img.size(2) |
|
padding = (0, max_w - w, 0, max_h - h) |
|
padded_img = torch.nn.functional.pad(img, padding, mode='constant', value=0) |
|
padded_images.append(padded_img) |
|
|
|
images = torch.stack(padded_images, 0) |
|
|
|
target_lengths = torch.tensor([len(label) for label in labels]).long() |
|
|
|
labels = pad_sequence(labels, batch_first=True, padding_value=0) |
|
|
|
return images, labels, target_lengths |