Spaces:
Runtime error
Runtime error
from datasets import load_dataset, concatenate_datasets | |
from sentence_transformers import SentenceTransformer | |
from torchvision import transforms | |
from models.encoder import Encoder | |
from indexer import Indexer | |
import numpy as np | |
import torch | |
import os | |
model = SentenceTransformer('intfloat/multilingual-e5-base') | |
encoder = Encoder() | |
encoder.load_state_dict(torch.load('./models/encoder.bin', map_location=torch.device('cpu'))) | |
dataset = load_dataset("Ransaka/youtube_recommendation_data", token=os.environ.get('HF')) | |
dataset = concatenate_datasets([dataset['train'], dataset['test']]) | |
latent_data = torch.load("data/latent_data_final.bin") | |
embeddings = torch.load("data/embeddings.bin") | |
def row_wise_normalize_and_concatenate(array1, array2): | |
normalized_array1 = array1 / np.linalg.norm(array1, axis=1, keepdims=True) | |
normalized_array2 = array2 / np.linalg.norm(array2, axis=1, keepdims=True) | |
concatenated_array = np.concatenate((normalized_array1, normalized_array2), axis=1) | |
return concatenated_array | |
# result_array = row_wise_normalize_and_concatenate(latent_data, embeddings) | |
# index = Indexer(result_array) | |
index = Indexer(latent_data) | |
def get_recommendations(image, title, k): | |
title_embeds = model.encode([title], normalize_embeddings=True) | |
image = transforms.ToTensor()(image.convert("L")) | |
image_embeds = encoder(image).detach().numpy() | |
# image_embeds = image_embeds / np.linalg.norm(image_embeds, axis=1, keepdims=True) | |
final_embeds = np.concatenate((image_embeds,title_embeds), axis=1) | |
# candidates = index.topk(final_embeds,k=k) | |
candidates = index.topk(image_embeds,k=k) | |
final_candidates = [] | |
final_candidates.append(list(candidates[0])) | |
final_candidates = sum(final_candidates,[]) | |
results_dict = {"image":[], "title":[]} | |
for candidate in final_candidates: | |
results_dict['image'].append(dataset['image'][candidate]) | |
results_dict['title'].append(dataset['title'][candidate]) | |
return results_dict |