Spaces:
Running
Running
File size: 4,805 Bytes
5d6a0bb 829289b 5d6a0bb 00e3b6c 5d6a0bb 9792e33 5d6a0bb 00e3b6c 5d6a0bb 00e3b6c 5d6a0bb 00e3b6c 5d6a0bb 00e3b6c 5d6a0bb 9792e33 461c5b6 5d6a0bb 00e3b6c 9792e33 461c5b6 00e3b6c 5d6a0bb 00e3b6c 5d6a0bb 461c5b6 5d6a0bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# -*- encoding: utf-8 -*-
import os
os.system('pip install -r requirements.txt')
import math
import random
import time
from pathlib import Path
import cv2
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from rapidocr_onnxruntime import RapidOCR
def draw_ocr_box_txt(image, boxes, txts, font_path,
scores=None, text_score=0.5):
h, w = image.height, image.width
img_left = image.copy()
img_right = Image.new('RGB', (w, h), (255, 255, 255))
random.seed(0)
draw_left = ImageDraw.Draw(img_left)
draw_right = ImageDraw.Draw(img_right)
for idx, (box, txt) in enumerate(zip(boxes, txts)):
if scores is not None and float(scores[idx]) < text_score:
continue
color = (random.randint(0, 255),
random.randint(0, 255),
random.randint(0, 255))
box = [tuple(v) for v in box]
draw_left.polygon(box, fill=color)
draw_right.polygon([box[0][0], box[0][1],
box[1][0], box[1][1],
box[2][0], box[2][1],
box[3][0], box[3][1]],
outline=color)
box_height = math.sqrt((box[0][0] - box[3][0])**2
+ (box[0][1] - box[3][1])**2)
box_width = math.sqrt((box[0][0] - box[1][0])**2
+ (box[0][1] - box[1][1])**2)
if box_height > 2 * box_width:
font_size = max(int(box_width * 0.9), 10)
font = ImageFont.truetype(font_path, font_size,
encoding="utf-8")
cur_y = box[0][1]
for c in txt:
char_size = font.getsize(c)
draw_right.text((box[0][0] + 3, cur_y), c,
fill=(0, 0, 0), font=font)
cur_y += char_size[1]
else:
font_size = max(int(box_height * 0.8), 10)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
draw_right.text([box[0][0], box[0][1]], txt,
fill=(0, 0, 0), font=font)
img_left = Image.blend(image, img_left, 0.5)
img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
img_show.paste(img_left, (0, 0, w, h))
img_show.paste(img_right, (w, 0, w * 2, h))
return np.array(img_show)
def visualize(image_path, boxes, txts, scores,
font_path="./FZYTK.TTF"):
image = Image.open(image_path)
draw_img = draw_ocr_box_txt(image, boxes,
txts, font_path,
scores,
text_score=0.5)
draw_img_save = Path("./inference_results/")
if not draw_img_save.exists():
draw_img_save.mkdir(parents=True, exist_ok=True)
time_stamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
image_save = str(draw_img_save / f'{time_stamp}_{Path(image_path).name}')
cv2.imwrite(image_save, draw_img[:, :, ::-1])
return image_save
def inference(img, box_thresh, unclip_ratio, text_score):
img_path = img.name
img = cv2.imread(img_path)
ocr_result, _ = rapid_ocr(img, box_thresh=box_thresh,
unclip_ratio=unclip_ratio,
text_score=text_score)
dt_boxes, rec_res, scores = list(zip(*ocr_result))
img_save_path = visualize(img_path, dt_boxes, rec_res, scores)
output_text = [f'{one_rec} {float(score):.4f}'
for one_rec, score in zip(rec_res, scores)]
return img_save_path, output_text
title = 'RapidOCR Demo (捷智OCR)'
description = 'Gradio demo for RapidOCR. Github Repo: https://github.com/RapidAI/RapidOCR'
article = "<p style='text-align: center'> Completely open source, free and support offline deployment of multi-platform and multi-language OCR SDK <a href='https://github.com/RapidAI/RapidOCR'>Github Repo</a></p>"
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
rapid_ocr = RapidOCR()
gr.Interface(
inference,
inputs=[
gr.inputs.Image(type='file', label='Input'),
gr.Slider(minimum=0, maximum=1.0, value=0.5,
label='box_thresh', step=0.1),
gr.Slider(minimum=1.5, maximum=2.0, value=1.6,
label='unclip_ratio', step=0.1),
gr.Slider(minimum=0, maximum=1.0, value=0.5,
label='text_score', step=0.1),
],
outputs=[
gr.outputs.Image(type='file', label='Output_image'),
gr.outputs.Textbox(type='text', label='Output_text')
],
title=title,
description=description,
article=article,
css=css,
allow_flagging='never',
).launch(debug=True, enable_queue=True)
|