File size: 6,186 Bytes
5d6a0bb
 
 
 
00e3b6c
5d6a0bb
 
9792e33
5d6a0bb
 
00e3b6c
5d6a0bb
 
 
 
 
 
 
 
 
 
 
 
00e3b6c
5d6a0bb
 
 
 
 
00e3b6c
 
5d6a0bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00e3b6c
 
5d6a0bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9792e33
d67e4e5
5d6a0bb
00e3b6c
 
 
0fd5b51
 
 
00e3b6c
 
 
 
 
9792e33
461c5b6
00e3b6c
0fd5b51
00e3b6c
0fd5b51
 
60d5cf3
0fd5b51
6e3957c
 
cabcd6b
 
997f57f
38181d4
 
 
997f57f
0fd5b51
 
 
 
 
 
 
 
 
 
 
 
 
 
4a4b4c1
 
 
 
 
0fd5b51
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- encoding: utf-8 -*-
import math
import random
import time
from pathlib import Path

import cv2
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from rapidocr_onnxruntime import RapidOCR


def draw_ocr_box_txt(image, boxes, txts, font_path,
                     scores=None, text_score=0.5):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))

    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and float(scores[idx]) < text_score:
            continue

        color = (random.randint(0, 255),
                 random.randint(0, 255),
                 random.randint(0, 255))

        box = [tuple(v) for v in box]
        draw_left.polygon(box, fill=color)
        draw_right.polygon([box[0][0], box[0][1],
                            box[1][0], box[1][1],
                            box[2][0], box[2][1],
                            box[3][0], box[3][1]],
                           outline=color)

        box_height = math.sqrt((box[0][0] - box[3][0])**2
                               + (box[0][1] - box[3][1])**2)

        box_width = math.sqrt((box[0][0] - box[1][0])**2
                              + (box[0][1] - box[1][1])**2)

        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
            font = ImageFont.truetype(font_path, font_size,
                                      encoding="utf-8")
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
                draw_right.text((box[0][0] + 3, cur_y), c,
                                fill=(0, 0, 0), font=font)
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
            draw_right.text([box[0][0], box[0][1]], txt,
                            fill=(0, 0, 0), font=font)

    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
    return np.array(img_show)


def visualize(image_path, boxes, txts, scores,
              font_path="./FZYTK.TTF"):
    image = Image.open(image_path)

    draw_img = draw_ocr_box_txt(image, boxes,
                                txts, font_path,
                                scores,
                                text_score=0.5)

    draw_img_save = Path("./inference_results/")
    if not draw_img_save.exists():
        draw_img_save.mkdir(parents=True, exist_ok=True)

    time_stamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
    image_save = str(draw_img_save / f'{time_stamp}_{Path(image_path).name}')
    cv2.imwrite(image_save, draw_img[:, :, ::-1])
    return image_save


def inference(img_path, box_thresh=0.5, unclip_ratio=1.6, text_score=0.5):
    img = cv2.imread(img_path)
    ocr_result, _ = rapid_ocr(img, box_thresh=box_thresh,
                              unclip_ratio=unclip_ratio,
                              text_score=text_score)
    if not ocr_result:
        return img_path, '未识别到有效文本'

    dt_boxes, rec_res, scores = list(zip(*ocr_result))
    img_save_path = visualize(img_path, dt_boxes, rec_res, scores)
    output_text = [f'{one_rec} {float(score):.4f}'
                   for one_rec, score in zip(rec_res, scores)]
    return img_save_path, output_text


rapid_ocr = RapidOCR()
examples = [['images/1.jpg']]

with gr.Blocks(title='RapidOCR') as demo:
    gr.Markdown("""
        <h1><center><a href="https://github.com/RapidAI/RapidOCR" target="_blank">Rapid⚡OCR</a></center></h1>

        ### Docs: [Docs](https://rapidocr.rtfd.io/)
        ### Parameters docs: [link](https://github.com/RapidAI/RapidOCR/tree/main/python#configyaml%E4%B8%AD%E5%B8%B8%E7%94%A8%E5%8F%82%E6%95%B0%E4%BB%8B%E7%BB%8D)
        - **box_thresh**: 检测到的框是文本的概率,值越大,框中是文本的概率就越大。存在漏检时,调低该值。取值范围:[0, 1.0]
        - **unclip_ratio**: 控制文本检测框的大小,值越大,检测框整体越大。在出现框截断文字的情况,调大该值。取值范围:[1.5, 2.0]
        - **text_score**: 文本识别结果是正确的置信度,值越大,显示出的识别结果更准确。存在漏检时,调低该值。取值范围:[0, 1.0]
        ### 运行环境:
        - Python: 3.8
        - onnxruntime: 1.14.1
        - rapidocr_onnxruntime: 1.2.5""")
    with gr.Box():
        with gr.Row():
            box_thresh = gr.Slider(minimum=0, maximum=1.0, value=0.5,
                                   label='box_thresh', step=0.1,
                                   interactive=True,
                                   info='[0, 1.0]')
            unclip_ratio = gr.Slider(minimum=1.5, maximum=2.0, value=1.6,
                                     label='unclip_ratio', step=0.1,
                                     interactive=True,
                                     info='[1.5, 2.0]')
            text_score = gr.Slider(minimum=0, maximum=1.0, value=0.5,
                                   label='text_score', step=0.1,
                                   interactive=True,
                                   info='[0, 1.0]')
        with gr.Row():
            input_img = gr.Image(type='filepath', label='Input')
            with gr.Column(scale=2):
                out_img = gr.Image(type='filepath', label='Output_image')
                out_txt = gr.outputs.Textbox(type='text', label='Output_text')
    button = gr.Button('Submit')
    button.click(fn=inference,
                 inputs=[input_img, box_thresh, unclip_ratio, text_score],
                 outputs=[out_img, out_txt])

    gr.Examples(examples=examples,
                inputs=[input_img, box_thresh, unclip_ratio, text_score],
                outputs=[out_img, out_txt], fn=inference)
demo.launch(debug=True, enable_queue=True)