Spaces:
Running
Running
File size: 7,972 Bytes
5d6a0bb 829289b efc65d4 829289b 5d6a0bb 00e3b6c 5d6a0bb 9792e33 5d6a0bb 00e3b6c 5d6a0bb 00e3b6c 5d6a0bb 00e3b6c 5d6a0bb 00e3b6c 5d6a0bb 9792e33 d67e4e5 5d6a0bb 00e3b6c 9792e33 461c5b6 00e3b6c e22ec91 476aa6e e22ec91 476aa6e e22ec91 a3586f8 5d6a0bb cf0eaf7 00e3b6c 5d6a0bb 461c5b6 cf0eaf7 461c5b6 f2678df 461c5b6 f2678df 461c5b6 f2678df 461c5b6 5d6a0bb cf0eaf7 5d6a0bb cf0eaf7 5d6a0bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# -*- encoding: utf-8 -*-
import os
os.system('pip install -r requirements.txt')
import math
import random
import time
from pathlib import Path
import cv2
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from rapidocr_onnxruntime import RapidOCR
def draw_ocr_box_txt(image, boxes, txts, font_path,
scores=None, text_score=0.5):
h, w = image.height, image.width
img_left = image.copy()
img_right = Image.new('RGB', (w, h), (255, 255, 255))
random.seed(0)
draw_left = ImageDraw.Draw(img_left)
draw_right = ImageDraw.Draw(img_right)
for idx, (box, txt) in enumerate(zip(boxes, txts)):
if scores is not None and float(scores[idx]) < text_score:
continue
color = (random.randint(0, 255),
random.randint(0, 255),
random.randint(0, 255))
box = [tuple(v) for v in box]
draw_left.polygon(box, fill=color)
draw_right.polygon([box[0][0], box[0][1],
box[1][0], box[1][1],
box[2][0], box[2][1],
box[3][0], box[3][1]],
outline=color)
box_height = math.sqrt((box[0][0] - box[3][0])**2
+ (box[0][1] - box[3][1])**2)
box_width = math.sqrt((box[0][0] - box[1][0])**2
+ (box[0][1] - box[1][1])**2)
if box_height > 2 * box_width:
font_size = max(int(box_width * 0.9), 10)
font = ImageFont.truetype(font_path, font_size,
encoding="utf-8")
cur_y = box[0][1]
for c in txt:
char_size = font.getsize(c)
draw_right.text((box[0][0] + 3, cur_y), c,
fill=(0, 0, 0), font=font)
cur_y += char_size[1]
else:
font_size = max(int(box_height * 0.8), 10)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
draw_right.text([box[0][0], box[0][1]], txt,
fill=(0, 0, 0), font=font)
img_left = Image.blend(image, img_left, 0.5)
img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
img_show.paste(img_left, (0, 0, w, h))
img_show.paste(img_right, (w, 0, w * 2, h))
return np.array(img_show)
def visualize(image_path, boxes, txts, scores,
font_path="./FZYTK.TTF"):
image = Image.open(image_path)
draw_img = draw_ocr_box_txt(image, boxes,
txts, font_path,
scores,
text_score=0.5)
draw_img_save = Path("./inference_results/")
if not draw_img_save.exists():
draw_img_save.mkdir(parents=True, exist_ok=True)
time_stamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
image_save = str(draw_img_save / f'{time_stamp}_{Path(image_path).name}')
cv2.imwrite(image_save, draw_img[:, :, ::-1])
return image_save
def inference(img_path, box_thresh=0.5, unclip_ratio=1.6, text_score=0.5):
img = cv2.imread(img_path)
ocr_result, _ = rapid_ocr(img, box_thresh=box_thresh,
unclip_ratio=unclip_ratio,
text_score=text_score)
dt_boxes, rec_res, scores = list(zip(*ocr_result))
img_save_path = visualize(img_path, dt_boxes, rec_res, scores)
output_text = [f'{one_rec} {float(score):.4f}'
for one_rec, score in zip(rec_res, scores)]
return img_save_path, output_text
title = 'RapidOCR Demo (捷智OCR)'
description = """Github Repo: [RapidOCR](https://github.com/RapidAI/RapidOCR)
Docs: [Docs](https://rapidocr.rtfd.io/)
Parameters docs: [link](https://github.com/RapidAI/RapidOCR/tree/main/python#configyaml%E4%B8%AD%E5%B8%B8%E7%94%A8%E5%8F%82%E6%95%B0%E4%BB%8B%E7%BB%8D)
box_thresh: 检测到的框是文本的概率,值越大,框中是文本的概率就越大。存在漏检时,调低该值。取值范围:[0, 1.0]
unclip_ratio: 控制文本检测框的大小,值越大,检测框整体越大。在出现框截断文字的情况,调大该值。取值范围:[1.5, 2.0]
text_score: 文本识别结果是正确的置信度,值越大,显示出的识别结果更准确。存在漏检时,调低该值。取值范围:[0, 1.0]
"""
article = """<p style='text-align: center'> Completely open source, free and support offline deployment of multi-platform and multi-language OCR SDK <a href='https://github.com/RapidAI/RapidOCR'>Github Repo</a></p>
<p align="left">
<a href="https://rapidai.deepdatasec.com:9003/" target="_blank"><img src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E-Online%20Demo-blue"></a>
<a href="https://huggingface.co/spaces/SWHL/RapidOCRDemo" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97-Hugging Face Demo-blue"></a>
<a href="https://colab.research.google.com/github/RapidAI/RapidOCR/blob/main/assets/RapidOCRDemo.ipynb" target="_blank"><img src="https://raw.githubusercontent.com/RapidAI/RapidOCR/main/assets/colab-badge.svg" alt="Open in Colab"></a>
<a href="https://aistudio.baidu.com/aistudio/projectdetail/4444785?sUid=57084&shared=1&ts=1660896122332" target="_blank"><img src="https://img.shields.io/badge/PP-Open in AI Studio-blue.svg"></a><br/>
<a href=""><img src="https://img.shields.io/badge/Python->=3.7,<=3.10-aff.svg"></a>
<a href=""><img src="https://img.shields.io/badge/OS-Linux%2C%20Win%2C%20Mac-pink.svg"></a>
<a href="https://github.com/RapidAI/RapidOCR/graphs/contributors"><img src="https://img.shields.io/github/contributors/RapidAI/RapidOCR?color=9ea"></a>
<a href="https://pepy.tech/project/rapidocr_onnxruntime"><img src="https://static.pepy.tech/personalized-badge/rapidocr_onnxruntime?period=total&units=abbreviation&left_color=grey&right_color=blue&left_text=Downloads%20Ort"></a>
<a href="https://pypi.org/project/rapidocr-onnxruntime/"><img alt="PyPI" src="https://img.shields.io/pypi/v/rapidocr-onnxruntime"></a>
<a href="https://github.com/RapidAI/RapidOCR/stargazers"><img src="https://img.shields.io/github/stars/RapidAI/RapidOCR?color=ccf"></a>
<a href="https://semver.org/"><img alt="SemVer2.0" src="https://img.shields.io/badge/SemVer-2.0-brightgreen"></a>
<a href='https://rapidocr.readthedocs.io/en/latest/?badge=latest'>
<img src='https://readthedocs.org/projects/rapidocr/badge/?version=latest' alt='Documentation Status' />
</a>
</p>
"""
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
examples = [['images/1.jpg']]
rapid_ocr = RapidOCR()
gr.Interface(
inference,
inputs=[
gr.inputs.Image(type='filepath', label='Input'),
gr.Slider(minimum=0, maximum=1.0, value=0.5,
label='box_thresh', step=0.1,
info='检测到的框是文本的概率,值越大,框中是文本的概率就越大。存在漏检时,调低该值。取值范围:[0, 1.0]'),
gr.Slider(minimum=1.5, maximum=2.0, value=1.6,
label='unclip_ratio', step=0.1,
info='控制文本检测框的大小,值越大,检测框整体越大。在出现框截断文字的情况,调大该值。取值范围:[1.5, 2.0]'),
gr.Slider(minimum=0, maximum=1.0, value=0.5,
label='text_score', step=0.1,
info='文本识别结果是正确的置信度,值越大,显示出的识别结果更准确。存在漏检时,调低该值。取值范围:[0, 1.0]'),
],
outputs=[
gr.outputs.Image(type='filepath', label='Output_image'),
gr.outputs.Textbox(type='text', label='Output_text')
],
title=title,
description=description,
examples=examples,
article=article,
css=css,
allow_flagging='never',
).launch(debug=True, enable_queue=True)
|