File size: 7,536 Bytes
dadc86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d23789
 
 
 
 
 
dadc86d
 
 
9d23789
dadc86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d23789
 
 
 
 
 
 
 
 
dadc86d
9d23789
 
 
 
 
 
 
 
dadc86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2967588
cd4dc68
dadc86d
 
037ba34
dadc86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# -*- encoding: utf-8 -*-
# @Author: SWHL
# @Contact: [email protected]
from enum import Enum
from pathlib import Path
from typing import List, Union

import gradio as gr
import numpy as np
from rapidocr import RapidOCR


class InferEngine(Enum):
    ort = "ONNXRuntime"
    vino = "OpenVino"
    paddle = "PaddlePaddle"
    torch = "PyTorch"


def get_ocr_engine(infer_engine: str, lang_det: str, lang_rec: str) -> RapidOCR:
    engine_mapping = {
        InferEngine.vino.value: "with_openvino",
        InferEngine.paddle.value: "with_paddle",
        InferEngine.torch.value: "with_torch",
    }
    param_key = engine_mapping.get(infer_engine, "with_onnx")

    return RapidOCR(
        params={
            f"Global.{param_key}": True,
            "Global.lang_det": lang_det,
            "Global.lang_rec": lang_rec,
        }
    )


def get_ocr_result(
    img: np.ndarray,
    text_score,
    box_thresh,
    unclip_ratio,
    lang_det,
    lang_rec,
    infer_engine,
    is_word: str,
):
    return_word_box = True if is_word == "Yes" else False

    ocr_engine = get_ocr_engine(infer_engine, lang_det=lang_det, lang_rec=lang_rec)

    ocr_result = ocr_engine(
        img,
        text_score=text_score,
        box_thresh=box_thresh,
        unclip_ratio=unclip_ratio,
        return_word_box=return_word_box,
    )
    vis_img = ocr_result.vis()
    if return_word_box:
        txts, scores, _ = list(zip(*ocr_result.word_results))
        ocr_txts = [[i, txt, score] for i, (txt, score) in enumerate(zip(txts, scores))]
        return vis_img, ocr_txts, ocr_result.elapse

    ocr_txts = [
        [i, txt, score]
        for i, (txt, score) in enumerate(zip(ocr_result.txts, ocr_result.scores))
    ]
    return vis_img, ocr_txts, ocr_result.elapse


def create_examples() -> List[List[Union[str, float]]]:
    DEFAULT_VALUES = [0.5, 0.5, 1.6, "ch_mobile", "ch_mobile", "ONNXRuntime", "No"]

    image_specs = [
        ("images/ch_en_num.jpg", {}),
        ("images/japan.jpg", {3: "multi_mobile", 4: "japan_mobile"}),
        ("images/korean.jpg", {3: "multi_mobile", 4: "korean_mobile"}),
        ("images/air_ticket.jpg", {}),
        ("images/car_plate.jpeg", {}),
        ("images/train_ticket.jpeg", {}),
    ]

    examples = []
    for image_path, overrides in image_specs:
        example = DEFAULT_VALUES.copy()
        example.insert(0, image_path)
        for index, value in overrides.items():
            example[index + 1] = value
        examples.append(example)
    return examples


infer_engine_list = [InferEngine[v].value for v in InferEngine.__members__]

lang_det_list = ["ch_mobile", "ch_server", "en_mobile", "en_server", "multi_mobile"]
lang_rec_list = [
    "ch_mobile",
    "ch_server",
    "chinese_cht",
    "en_mobile",
    "ar_mobile",
    "cyrillic_mobile",
    "devanagari_mobile",
    "japan_mobile",
    "ka_mobile",
    "korean_mobile",
    "latin_mobile",
    "ta_mobile",
    "te_mobile",
]

custom_css = """
    body {font-family: body {font-family: 'Helvetica Neue', Helvetica;}
    .gr-button {background-color: #4CAF50; color: white; border: none; padding: 10px 20px; border-radius: 5px;}
    .gr-button:hover {background-color: #45a049;}
    .gr-textbox {margin-bottom: 15px;}
    .example-button {background-color: #1E90FF; color: white; border: none; padding: 8px 15px; border-radius: 5px; margin: 5px;}
    .example-button:hover {background-color: #FF4500;}
    .tall-radio .gr-radio-item {padding: 15px 0; min-height: 50px; display: flex; align-items: center;}
    .tall-radio label {font-size: 16px;}
    .output-image, .input-image, .image-preview {height: 300px !important}
"""

with gr.Blocks(
    title="Rapid⚡OCR Demo", css="custom_css", theme=gr.themes.Soft()
) as demo:
    gr.HTML(
        """
        <h1 style='text-align: center;font-size:40px'>Rapid⚡OCR</h1>
        
        <div style="display: flex; justify-content: center; gap: 10px;">
            <a href=""><img src="https://img.shields.io/badge/Python->=3.6-aff.svg"></a>
            <a href="https://rapidai.github.io/RapidOCRDocs"><img src="https://img.shields.io/badge/Docs-link-aff.svg"></a>
            <a href=""><img src="https://img.shields.io/badge/OS-Linux%2C%20Win%2C%20Mac-pink.svg"></a>
            <a href="https://pepy.tech/project/rapidocr"><img src="https://static.pepy.tech/personalized-badge/rapidocr?period=total&units=abbreviation&left_color=grey&right_color=blue&left_text=Downloads%20rapidocr"></a>
            <a href="https://pypi.org/project/rapidocr/"><img alt="PyPI" src="https://img.shields.io/pypi/v/rapidocr"></a>
            <a href="https://github.com/RapidAI/RapidOCR"><img src="https://img.shields.io/github/stars/RapidAI/RapidOCR?color=ccf"></a>
        </div>
    """
    )
    with gr.Row():
        text_score = gr.Slider(
            label="text_score",
            minimum=0,
            maximum=1.0,
            value=0.5,
            step=0.1,
            info="文本识别结果是正确的置信度,值越大,显示出的识别结果更准确。存在漏检时,调低该值。取值范围:[0, 1.0],默认值为0.5",
        )
        box_thresh = gr.Slider(
            label="box_thresh",
            minimum=0,
            maximum=1.0,
            value=0.5,
            step=0.1,
            info="检测到的框是文本的概率,值越大,框中是文本的概率就越大。存在漏检时,调低该值。取值范围:[0, 1.0],默认值为0.5",
        )
        unclip_ratio = gr.Slider(
            label="unclip_ratio",
            minimum=1.5,
            maximum=2.0,
            value=1.6,
            step=0.1,
            info="控制文本检测框的大小,值越大,检测框整体越大。在出现框截断文字的情况,调大该值。取值范围:[1.5, 2.0],默认值为1.6",
        )

    with gr.Row():
        select_infer_engine = gr.Dropdown(
            choices=infer_engine_list,
            label="Infer Engine (推理引擎)",
            value="ONNXRuntime",
            interactive=True,
        )
        lang_det = gr.Dropdown(
            choices=lang_det_list,
            label="Det model (文本检测模型)",
            value=lang_det_list[0],
            interactive=True,
        )
        lang_rec = gr.Dropdown(
            choices=lang_rec_list,
            label="Rec model (文本识别模型)",
            value=lang_rec_list[0],
            interactive=True,
        )
        is_word = gr.Radio(
            ["Yes", "No"], label="Return word box (返回单字符)", value="No"
        )

    img_input = gr.Image(label="Upload or Select Image", sources="upload")

    run_btn = gr.Button("Run")

    img_output = gr.Image(label="Output Image")
    elapse = gr.Textbox(label="Elapse(s)")
    ocr_results = gr.Dataframe(
        label="OCR Txts",
        headers=["Index", "Txt", "Score"],
        datatype=["number", "str", "number"],
        show_copy_button=True,
    )

    ocr_inputs = [
        img_input,
        text_score,
        box_thresh,
        unclip_ratio,
        lang_det,
        lang_rec,
        select_infer_engine,
        is_word,
    ]
    run_btn.click(
        get_ocr_result, inputs=ocr_inputs, outputs=[img_output, ocr_results, elapse]
    )

    examples = gr.Examples(
        examples=create_examples(),
        examples_per_page=5,
        inputs=ocr_inputs,
        fn=get_ocr_result,
        outputs=[img_output, ocr_results, elapse],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch(debug=True)