Commit
·
fba5215
1
Parent(s):
25fffe1
Upload config.py
Browse files
config.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import albumentations as A
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from albumentations.pytorch import ToTensorV2
|
| 6 |
+
from utils import seed_everything
|
| 7 |
+
|
| 8 |
+
DATASET = '/content/PASCAL_VOC'
|
| 9 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
# seed_everything() # If you want deterministic behavior
|
| 11 |
+
NUM_WORKERS = 2
|
| 12 |
+
BATCH_SIZE = 32
|
| 13 |
+
IMAGE_SIZE = 416
|
| 14 |
+
NUM_CLASSES = 20
|
| 15 |
+
LEARNING_RATE = 1e-3
|
| 16 |
+
WEIGHT_DECAY = 1e-4
|
| 17 |
+
NUM_EPOCHS = 40
|
| 18 |
+
CONF_THRESHOLD = 0.05
|
| 19 |
+
MAP_IOU_THRESH = 0.5
|
| 20 |
+
NMS_IOU_THRESH = 0.45
|
| 21 |
+
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
|
| 22 |
+
PIN_MEMORY = True
|
| 23 |
+
LOAD_MODEL = False
|
| 24 |
+
SAVE_MODEL = True
|
| 25 |
+
CHECKPOINT_FILE = "checkpoint.pth.tar"
|
| 26 |
+
IMG_DIR = DATASET + "/images/"
|
| 27 |
+
LABEL_DIR = DATASET + "/labels/"
|
| 28 |
+
|
| 29 |
+
ANCHORS = [
|
| 30 |
+
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
|
| 31 |
+
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
|
| 32 |
+
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
|
| 33 |
+
] # Note these have been rescaled to be between [0, 1]
|
| 34 |
+
|
| 35 |
+
SCALED_ANCHORS = (
|
| 36 |
+
torch.tensor(ANCHORS) * torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
| 37 |
+
).to(device="cuda")
|
| 38 |
+
means = [0.485, 0.456, 0.406]
|
| 39 |
+
|
| 40 |
+
scale = 1.1
|
| 41 |
+
train_transforms = A.Compose(
|
| 42 |
+
[
|
| 43 |
+
A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)),
|
| 44 |
+
A.PadIfNeeded(
|
| 45 |
+
min_height=int(IMAGE_SIZE * scale),
|
| 46 |
+
min_width=int(IMAGE_SIZE * scale),
|
| 47 |
+
border_mode=cv2.BORDER_CONSTANT,
|
| 48 |
+
),
|
| 49 |
+
A.Rotate(limit = 10, interpolation=1, border_mode=4),
|
| 50 |
+
A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
|
| 51 |
+
A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
|
| 52 |
+
A.OneOf(
|
| 53 |
+
[
|
| 54 |
+
A.ShiftScaleRotate(
|
| 55 |
+
rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT
|
| 56 |
+
),
|
| 57 |
+
# A.Affine(shear=15, p=0.5, mode="constant"),
|
| 58 |
+
],
|
| 59 |
+
p=1.0,
|
| 60 |
+
),
|
| 61 |
+
A.HorizontalFlip(p=0.5),
|
| 62 |
+
A.Blur(p=0.1),
|
| 63 |
+
A.CLAHE(p=0.1),
|
| 64 |
+
A.Posterize(p=0.1),
|
| 65 |
+
A.ToGray(p=0.1),
|
| 66 |
+
A.ChannelShuffle(p=0.05),
|
| 67 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
| 68 |
+
ToTensorV2(),
|
| 69 |
+
],
|
| 70 |
+
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],),
|
| 71 |
+
)
|
| 72 |
+
test_transforms = A.Compose(
|
| 73 |
+
[
|
| 74 |
+
A.LongestMaxSize(max_size=IMAGE_SIZE),
|
| 75 |
+
A.PadIfNeeded(
|
| 76 |
+
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
|
| 77 |
+
),
|
| 78 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
| 79 |
+
ToTensorV2(),
|
| 80 |
+
],
|
| 81 |
+
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]),
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
PASCAL_CLASSES = [
|
| 85 |
+
"aeroplane",
|
| 86 |
+
"bicycle",
|
| 87 |
+
"bird",
|
| 88 |
+
"boat",
|
| 89 |
+
"bottle",
|
| 90 |
+
"bus",
|
| 91 |
+
"car",
|
| 92 |
+
"cat",
|
| 93 |
+
"chair",
|
| 94 |
+
"cow",
|
| 95 |
+
"diningtable",
|
| 96 |
+
"dog",
|
| 97 |
+
"horse",
|
| 98 |
+
"motorbike",
|
| 99 |
+
"person",
|
| 100 |
+
"pottedplant",
|
| 101 |
+
"sheep",
|
| 102 |
+
"sofa",
|
| 103 |
+
"train",
|
| 104 |
+
"tvmonitor"
|
| 105 |
+
]
|
| 106 |
+
|
| 107 |
+
COCO_LABELS = ['person',
|
| 108 |
+
'bicycle',
|
| 109 |
+
'car',
|
| 110 |
+
'motorcycle',
|
| 111 |
+
'airplane',
|
| 112 |
+
'bus',
|
| 113 |
+
'train',
|
| 114 |
+
'truck',
|
| 115 |
+
'boat',
|
| 116 |
+
'traffic light',
|
| 117 |
+
'fire hydrant',
|
| 118 |
+
'stop sign',
|
| 119 |
+
'parking meter',
|
| 120 |
+
'bench',
|
| 121 |
+
'bird',
|
| 122 |
+
'cat',
|
| 123 |
+
'dog',
|
| 124 |
+
'horse',
|
| 125 |
+
'sheep',
|
| 126 |
+
'cow',
|
| 127 |
+
'elephant',
|
| 128 |
+
'bear',
|
| 129 |
+
'zebra',
|
| 130 |
+
'giraffe',
|
| 131 |
+
'backpack',
|
| 132 |
+
'umbrella',
|
| 133 |
+
'handbag',
|
| 134 |
+
'tie',
|
| 135 |
+
'suitcase',
|
| 136 |
+
'frisbee',
|
| 137 |
+
'skis',
|
| 138 |
+
'snowboard',
|
| 139 |
+
'sports ball',
|
| 140 |
+
'kite',
|
| 141 |
+
'baseball bat',
|
| 142 |
+
'baseball glove',
|
| 143 |
+
'skateboard',
|
| 144 |
+
'surfboard',
|
| 145 |
+
'tennis racket',
|
| 146 |
+
'bottle',
|
| 147 |
+
'wine glass',
|
| 148 |
+
'cup',
|
| 149 |
+
'fork',
|
| 150 |
+
'knife',
|
| 151 |
+
'spoon',
|
| 152 |
+
'bowl',
|
| 153 |
+
'banana',
|
| 154 |
+
'apple',
|
| 155 |
+
'sandwich',
|
| 156 |
+
'orange',
|
| 157 |
+
'broccoli',
|
| 158 |
+
'carrot',
|
| 159 |
+
'hot dog',
|
| 160 |
+
'pizza',
|
| 161 |
+
'donut',
|
| 162 |
+
'cake',
|
| 163 |
+
'chair',
|
| 164 |
+
'couch',
|
| 165 |
+
'potted plant',
|
| 166 |
+
'bed',
|
| 167 |
+
'dining table',
|
| 168 |
+
'toilet',
|
| 169 |
+
'tv',
|
| 170 |
+
'laptop',
|
| 171 |
+
'mouse',
|
| 172 |
+
'remote',
|
| 173 |
+
'keyboard',
|
| 174 |
+
'cell phone',
|
| 175 |
+
'microwave',
|
| 176 |
+
'oven',
|
| 177 |
+
'toaster',
|
| 178 |
+
'sink',
|
| 179 |
+
'refrigerator',
|
| 180 |
+
'book',
|
| 181 |
+
'clock',
|
| 182 |
+
'vase',
|
| 183 |
+
'scissors',
|
| 184 |
+
'teddy bear',
|
| 185 |
+
'hair drier',
|
| 186 |
+
'toothbrush'
|
| 187 |
+
]
|