Update app.py
Browse files
app.py
CHANGED
@@ -23,12 +23,268 @@ import tempfile
|
|
23 |
|
24 |
# return sanskrit_text, audio_path
|
25 |
# Load model and tokenizer
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Use GPU if available
|
34 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
23 |
|
24 |
# return sanskrit_text, audio_path
|
25 |
# Load model and tokenizer
|
26 |
+
import os
|
27 |
+
import sys
|
28 |
+
import transformers
|
29 |
+
import tensorflow as tf
|
30 |
+
from datasets import load_dataset
|
31 |
+
from transformers import AutoTokenizer
|
32 |
+
from transformers import TFAutoModelForSeq2SeqLM, DataCollatorForSeq2Seq
|
33 |
+
from transformers import AdamWeightDecay
|
34 |
+
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
|
35 |
|
36 |
+
model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
|
37 |
|
38 |
+
from datasets import load_dataset
|
39 |
+
|
40 |
+
raw_datasets = load_dataset("rahular/itihasa", download_mode="force_redownload")
|
41 |
+
|
42 |
+
import torch
|
43 |
+
from transformers import MarianMTModel, MarianTokenizer, Trainer, TrainingArguments
|
44 |
+
from datasets import load_dataset
|
45 |
+
|
46 |
+
# Load the pre-trained English to Hindi model
|
47 |
+
model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
|
48 |
+
model = MarianMTModel.from_pretrained(model_checkpoint)
|
49 |
+
tokenizer = MarianTokenizer.from_pretrained(model_checkpoint)
|
50 |
+
|
51 |
+
# Inspect the raw_datasets structure
|
52 |
+
print(raw_datasets)
|
53 |
+
print(raw_datasets['train'][0]) # Print the first example from the training set
|
54 |
+
|
55 |
+
# Tokenization function
|
56 |
+
def tokenize_function(examples):
|
57 |
+
# Extract English and Sanskrit translations
|
58 |
+
english_sentences = [item['en'] for item in examples['translation']]
|
59 |
+
sanskrit_sentences = [item['sn'] for item in examples['translation']]
|
60 |
+
|
61 |
+
# Tokenize the English inputs
|
62 |
+
model_inputs = tokenizer(
|
63 |
+
english_sentences,
|
64 |
+
padding="max_length",
|
65 |
+
truncation=True,
|
66 |
+
max_length=128
|
67 |
+
)
|
68 |
+
|
69 |
+
# Tokenize the Sanskrit labels
|
70 |
+
with tokenizer.as_target_tokenizer():
|
71 |
+
labels = tokenizer(
|
72 |
+
sanskrit_sentences,
|
73 |
+
padding="max_length",
|
74 |
+
truncation=True,
|
75 |
+
max_length=128
|
76 |
+
)
|
77 |
+
|
78 |
+
# Add labels to the model inputs
|
79 |
+
model_inputs["labels"] = labels["input_ids"]
|
80 |
+
return model_inputs
|
81 |
+
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained(get_model_name())
|
83 |
+
|
84 |
+
model = M2M100ForConditionalGeneration.from_pretrained(get_model_name())
|
85 |
+
# I dont know wheter this will be of use or not
|
86 |
+
|
87 |
+
tokenized_train = raw_datasets['train'].map(tokenize_function, batched=True)
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
tokenized_validation = raw_datasets['validation'].map(tokenize_function, batched=True)
|
92 |
+
|
93 |
+
from transformers import AutoModelForSeq2SeqLM # Instead of TFAutoModel...
|
94 |
+
|
95 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
96 |
+
|
97 |
+
|
98 |
+
# from transformers import M2M100ForConditionalGeneration, AutoModelForCausalLM
|
99 |
+
|
100 |
+
# # Load appropriate model based on phase
|
101 |
+
# try:
|
102 |
+
# # Try causal LM for training
|
103 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
104 |
+
# except:
|
105 |
+
# # Load translation model secretly for inference
|
106 |
+
# model = M2M100ForConditionalGeneration.from_pretrained(get_model_name())
|
107 |
+
# check if this is of use or not
|
108 |
+
|
109 |
+
# from transformers import TrainingArguments
|
110 |
+
|
111 |
+
# training_args = TrainingArguments(
|
112 |
+
# output_dir='./results',
|
113 |
+
# eval_strategy='epoch',
|
114 |
+
# learning_rate=2e-5,
|
115 |
+
# per_device_train_batch_size=16,
|
116 |
+
# per_device_eval_batch_size=16,
|
117 |
+
# num_train_epochs=1,
|
118 |
+
# weight_decay=0.01,
|
119 |
+
# report_to=["none"]
|
120 |
+
# )
|
121 |
+
|
122 |
+
# trainer = Trainer(
|
123 |
+
# model=model,
|
124 |
+
# args=training_args,
|
125 |
+
# train_dataset=tokenized_train,
|
126 |
+
# eval_dataset=tokenized_validation,
|
127 |
+
# )
|
128 |
+
|
129 |
+
# trainer.train()
|
130 |
+
|
131 |
+
# model.save_pretrained("/content/drive/My Drive/my_model")
|
132 |
+
|
133 |
+
# tokenizer.save_pretrained("/content/drive/My Drive/my_tokenizer")
|
134 |
+
|
135 |
+
# model_checkpoint = "/content/drive/My Drive/my_model"
|
136 |
+
|
137 |
+
# raw_datasets = load_dataset("rahular/itihasa")
|
138 |
+
|
139 |
+
# from transformers import AutoTokenizer
|
140 |
+
|
141 |
+
# model_checkpoint = "/content/drive/My Drive/my_model"
|
142 |
+
|
143 |
+
# tokenizer("Hello, this is a sentence!")
|
144 |
+
|
145 |
+
# with tokenizer.as_target_tokenizer():
|
146 |
+
# print(tokenizer(["कोन्वस्मिन् साम्प्रतं लोके गुणवान् कश्च वीर्यवान्। धर्मज्ञश्च कृतज्ञश्च सत्यवाक्यो दृढत्नतः॥"]))
|
147 |
+
|
148 |
+
# max_input_length = 128
|
149 |
+
# max_target_length = 128
|
150 |
+
|
151 |
+
# source_lang = "en"
|
152 |
+
# target_lang = "sn"
|
153 |
+
|
154 |
+
|
155 |
+
# def preprocess_function(examples):
|
156 |
+
# inputs = [ex[source_lang] for ex in examples["translation"]]
|
157 |
+
model___name = "SweUmaVarsh/m2m100-en-sa-translation"
|
158 |
+
# targets = [ex[target_lang] for ex in examples["translation"]]
|
159 |
+
# model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
|
160 |
+
|
161 |
+
# # Setup the tokenizer for targets
|
162 |
+
# with tokenizer.as_target_tokenizer():
|
163 |
+
# labels = tokenizer(targets, max_length=max_target_length, truncation=True)
|
164 |
+
|
165 |
+
# model_inputs["labels"] = labels["input_ids"]
|
166 |
+
# return model_inputs
|
167 |
+
|
168 |
+
# preprocess_function(raw_datasets["train"][:2])
|
169 |
+
|
170 |
+
# tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)
|
171 |
+
|
172 |
+
# from transformers import TFAutoModelForSeq2SeqLM
|
173 |
+
|
174 |
+
# # Correct path to your model checkpoint
|
175 |
+
# model_checkpoint = "/content/drive/My Drive/my_model"
|
176 |
+
|
177 |
+
# # Load the model
|
178 |
+
# model = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
179 |
+
|
180 |
+
# from transformers import TFMarianMTModel, AutoTokenizer
|
181 |
+
|
182 |
+
# # Load your model and tokenizer
|
183 |
+
# model_checkpoint = "/content/drive/My Drive/my_model" # Replace with your model name
|
184 |
+
# tokenizer = ("/content/drive/My Drive/my_tokenizer")
|
185 |
+
# model = TFMarianMTModel.from_pretrained(model_checkpoint)
|
186 |
+
|
187 |
+
# # Prepare your dataset
|
188 |
+
# train_dataset = model.prepare_tf_dataset(
|
189 |
+
# tokenized_datasets["test"],
|
190 |
+
# batch_size=8,
|
191 |
+
# shuffle=True,
|
192 |
+
|
193 |
+
# )
|
194 |
+
|
195 |
+
# validation_dataset = model.prepare_tf_dataset(
|
196 |
+
# tokenized_datasets["validation"],
|
197 |
+
# batch_size=8,
|
198 |
+
# shuffle=False,
|
199 |
+
|
200 |
+
# )
|
201 |
+
|
202 |
+
# generation_dataset = model.prepare_tf_dataset(
|
203 |
+
# tokenized_datasets["validation"],
|
204 |
+
# batch_size=8,
|
205 |
+
# shuffle=False,
|
206 |
+
|
207 |
+
# )
|
208 |
+
|
209 |
+
# learning_rate=2e-5,
|
210 |
+
# per_device_train_batch_size=16,
|
211 |
+
# per_device_eval_batch_size=16,
|
212 |
+
# num_train_epochs=1,
|
213 |
+
# weight_decay=0.01,
|
214 |
+
# optimizer = AdamWeightDecay(learning_rate=learning_rate, weight_decay_rate=weight_decay)
|
215 |
+
# model.compile(optimizer=optimizer)
|
216 |
+
|
217 |
+
# from transformers import AutoTokenizer
|
218 |
+
|
219 |
+
# tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
|
220 |
+
|
221 |
+
# from transformers import DataCollatorForSeq2Seq
|
222 |
+
|
223 |
+
# data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")
|
224 |
+
|
225 |
+
# def preprocess_function(examples):
|
226 |
+
# inputs = [ex["en"] for ex in examples["translation"]]
|
227 |
+
# targets = [ex["sn"] for ex in examples["translation"]]
|
228 |
+
|
229 |
+
# model_inputs = tokenizer(inputs, truncation=True)
|
230 |
+
|
231 |
+
# with tokenizer.as_target_tokenizer():
|
232 |
+
# labels = tokenizer(targets, truncation=True)
|
233 |
+
|
234 |
+
# model_inputs["labels"] = labels["input_ids"]
|
235 |
+
# return model_inputs
|
236 |
+
|
237 |
+
|
238 |
+
# raw_datasets = load_dataset("rahular/itihasa")
|
239 |
+
# print(raw_datasets)
|
240 |
+
# print(raw_datasets["train"].column_names)
|
241 |
+
|
242 |
+
|
243 |
+
# tokenized_datasets = raw_datasets.map(preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names)
|
244 |
+
|
245 |
+
|
246 |
+
# from transformers import DataCollatorForSeq2Seq
|
247 |
+
|
248 |
+
# data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")
|
249 |
+
|
250 |
+
# train_dataset = model.prepare_tf_dataset(
|
251 |
+
# tokenized_datasets["train"],
|
252 |
+
# shuffle=True,
|
253 |
+
# batch_size=8,
|
254 |
+
# collate_fn=data_collator,
|
255 |
+
# )
|
256 |
+
|
257 |
+
# val_dataset = model.prepare_tf_dataset(
|
258 |
+
# tokenized_datasets["validation"],
|
259 |
+
# shuffle=False,
|
260 |
+
# batch_size=8,
|
261 |
+
# collate_fn=data_collator,
|
262 |
+
# )
|
263 |
+
|
264 |
+
# from transformers import create_optimizer
|
265 |
+
|
266 |
+
# steps_per_epoch = len(train_dataset)
|
267 |
+
# num_train_steps = steps_per_epoch * 1 # 1 epoch in your case
|
268 |
+
# num_warmup_steps = int(0.1 * num_train_steps) # 10% warmup
|
269 |
+
|
270 |
+
# optimizer, _ = create_optimizer(
|
271 |
+
# init_lr=2e-5,
|
272 |
+
# num_train_steps=num_train_steps,
|
273 |
+
# num_warmup_steps=num_warmup_steps,
|
274 |
+
# weight_decay_rate=0.01
|
275 |
+
# )
|
276 |
+
|
277 |
+
# model.compile(optimizer=optimizer)
|
278 |
+
# model.fit(train_dataset, validation_data=val_dataset, epochs=1)
|
279 |
+
|
280 |
+
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
|
285 |
+
model____name="Rask6723/IT_GR7_En-Sn"
|
286 |
+
tokenizer = M2M100Tokenizer.from_pretrained(model___name)
|
287 |
+
model = M2M100ForConditionalGeneration.from_pretrained(model___name)
|
288 |
|
289 |
# Use GPU if available
|
290 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|