File size: 6,230 Bytes
3aca6ad fe0e27c 3aca6ad fe0e27c 05f0c46 fe0e27c 05f0c46 fe0e27c 05f0c46 fe0e27c 05f0c46 fe0e27c 05f0c46 fe0e27c 05f0c46 fe0e27c 05f0c46 fe0e27c 05f0c46 fe0e27c 05f0c46 fe0e27c 05f0c46 fe0e27c 3aca6ad fe0e27c cf4318d fe0e27c 3aca6ad cf4318d fe0e27c cf4318d fe0e27c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
#file_path = "cleaned_bmd_medication_data.xlsx"
import streamlit as st
import pandas as pd
import plotly.graph_objs as go
# Constants from linear regression
REGRESSION_CONSTANTS = {
'Femoral Neck': {'mu': 0.916852, 'sigma': 0.120754},
'Total Hip': {'mu': 0.955439, 'sigma': 0.125406},
'Lumbar spine (L1-L4)': {'mu': 1.131649, 'sigma': 0.139618},
}
# Load medication data
@st.cache_data
def load_medication_data():
file_path = "cleaned_bmd_medication_data.xlsx"
return pd.read_excel(file_path)
# Calculate predicted BMD after medication
def calculate_bmd(bmd, percentage_increase):
return bmd * (1 + percentage_increase)
# Convert BMD to T-score
def calculate_tscore(bmd, mu, sigma):
return (bmd - mu) / sigma
# Generate prediction table for all drugs
def generate_predictions(medication_data, site, bmd, mu, sigma):
site_data = medication_data[medication_data['Site'] == site]
all_results = []
for _, row in site_data.iterrows():
drug = row['Medication']
predictions = {
'Year': ['0'],
'Year Index': [0], # Numeric x-axis for plotting
'Predicted BMD': [round(bmd, 3)],
'Predicted T-score': [round(calculate_tscore(bmd, mu, sigma), 1)]
}
year_index = 1
for year in row.index[1:-1]: # Skip 'Medication' and 'Site' columns
if not pd.isna(row[year]):
percentage_increase = row[year]
predicted_bmd = bmd * (1 + percentage_increase)
predicted_tscore = calculate_tscore(predicted_bmd, mu, sigma)
predictions['Year'].append(year.replace(" Year", "")) # Simplify year label
predictions['Year Index'].append(year_index) # Numeric x-axis
predictions['Predicted BMD'].append(round(predicted_bmd, 3))
predictions['Predicted T-score'].append(round(predicted_tscore, 1))
year_index += 1
all_results.append({'Drug': drug, 'Predictions': predictions})
return all_results
# Display results as table and plots
def display_results(predictions, site):
st.subheader(f"Predictions for {site}")
for result in predictions:
drug = result['Drug']
predictions = result['Predictions']
# Display table
st.write(f"### {drug}")
st.dataframe(pd.DataFrame(predictions))
# Plot BMD and T-score using Year Index
bmd_plot = go.Scatter(
x=predictions['Year Index'], y=predictions['Predicted BMD'], mode='lines+markers',
name='Predicted BMD', line=dict(color='blue')
)
tscore_plot = go.Scatter(
x=predictions['Year Index'], y=predictions['Predicted T-score'], mode='lines+markers',
name='Predicted T-score', line=dict(color='green')
)
# Combine plots in a single row
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(go.Figure(data=[bmd_plot], layout=go.Layout(
title=f"{drug} - Predicted BMD", xaxis_title="Year", yaxis_title="BMD (g/cm²)",
xaxis=dict(tickmode='array', tickvals=predictions['Year Index'], ticktext=predictions['Year'])
)))
with col2:
st.plotly_chart(go.Figure(data=[tscore_plot], layout=go.Layout(
title=f"{drug} - Predicted T-score", xaxis_title="Year", yaxis_title="T-score",
xaxis=dict(tickmode='array', tickvals=predictions['Year Index'], ticktext=predictions['Year'])
)))
# Streamlit UI
def main():
st.title("BMD and T-score Prediction Tool")
# DEXA Machine Selection
dexa_machine = st.selectbox("DEXA Machine", ["LUNAR"])
# Gender Selection
gender = st.selectbox("Gender", ["Female"])
# Location (Site) Selection with Mapping
site_mapping = {
'Lumbar spine (L1-L4)': 'LS',
'Femoral Neck': 'FN',
'Total Hip': 'TH'
}
site_options = list(site_mapping.keys())
selected_site = st.selectbox("Select Region (Site)", site_options)
site = site_mapping[selected_site] # Map to the actual value in the dataset
# Input patient data
bmd_patient = st.number_input(
"Initial BMD",
min_value=0.000, max_value=2.000,
value=0.800, step=0.001,
format="%.3f"
)
# Medication Selection with Checkboxes
st.subheader("Select Medications to Display")
# Add "Show All" Option
show_all = st.checkbox("Show All Medications")
# Define medications by rows
medication_rows = [
["Alendronate", "Risedronate", "Ibandronate oral"],
["Zoledronate", "Ibandronate IV (3mg)"],
["Denosumab", "Denosumab + Teriparatide"],
["Teriparatide", "Teriparatide + Denosumab"],
["Romosozumab", "Romosozumab + Denosumab", "Romosozumab + Alendronate"],
["Romosozumab + Ibandronate", "Romosozumab + Zoledronate"]
]
# Create checkboxes for each row
selected_medications = []
if not show_all:
for row in medication_rows:
cols = st.columns(len(row))
for col, med in zip(cols, row):
if col.checkbox(med):
selected_medications.append(med)
else:
# If "Show All" is checked, include all medications
selected_medications = [med for row in medication_rows for med in row]
# Load constants and medication data
medication_data = load_medication_data()
constants = REGRESSION_CONSTANTS.get(selected_site, {})
# Generate and display predictions for selected medications
if st.button("Predict"):
all_predictions = generate_predictions(medication_data, site, bmd_patient, constants['mu'], constants['sigma'])
filtered_predictions = [pred for pred in all_predictions if pred['Drug'] in selected_medications]
if not filtered_predictions:
st.warning("No medications selected. Please select at least one medication or use the 'Show All' option.")
else:
display_results(filtered_predictions, selected_site)
if __name__ == "__main__":
main()
|