File size: 9,151 Bytes
48c283c 0f4785f 4dd63ab 2f95965 4dd63ab 4111c89 4dd63ab b27e6a4 4dd63ab 455ed4c 4dd63ab 455ed4c b27e6a4 4dd63ab b27e6a4 0d99249 b27e6a4 db2b096 455ed4c b27e6a4 455ed4c 0f4785f b27e6a4 4dd63ab 455ed4c 4dd63ab b27e6a4 0f4785f b27e6a4 4dd63ab b27e6a4 0f4785f 455ed4c b27e6a4 455ed4c b27e6a4 455ed4c b27e6a4 48c283c b27e6a4 455ed4c b27e6a4 48c283c b27e6a4 455ed4c b27e6a4 0f4785f bf0cef3 9ab38ae 094d1d2 d0ee391 bf0cef3 094d1d2 d0ee391 9ab38ae d0ee391 8adbcfb d0ee391 9141e76 39a0ac0 9141e76 39a0ac0 9141e76 0f4785f d0ee391 0f4785f 4dd63ab 0e2051f 2f95965 0e2051f b93eca7 0e2051f 53461be 12f2cdc 4dd63ab 80f8ca3 392d9ef 4dd63ab 2f95965 0d99249 392d9ef 4dd63ab 392d9ef 54d9d0f 392d9ef d0ee391 9ab38ae d0ee391 392d9ef b93eca7 80f8ca3 0f4785f 331fa49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
#file_path = "cleaned_bmd_medication_data.xlsx"
import streamlit as st
import pandas as pd
import plotly.graph_objs as go
# Constants from linear regression
REGRESSION_CONSTANTS = {
'Femoral Neck': {
'Female': {'mu': 0.916852, 'sigma': 0.120754},
'Male': {'mu': 0.9687385325352573, 'sigma': 0.121870698023835}
},
'Total Hip': {
'Female': {'mu': 0.955439, 'sigma': 0.125406},
'Male': {'mu': 0.967924895046735, 'sigma': 0.13081439619361657}
},
'Lumbar spine (L1-L4)': {
'Female': {'mu': 1.131649, 'sigma': 0.139618},
'Male': {'mu': 1.1309707991669353, 'sigma': 0.1201836924980611}
}
}
# Load medication data
@st.cache_data
def load_medication_data():
file_path = "cleaned_bmd_medication_data.xlsx"
return pd.read_excel(file_path)
# Calculate predicted BMD after medication
def calculate_bmd(bmd, percentage_increase):
return bmd * (1 + percentage_increase)
# Convert BMD to T-score
def calculate_tscore(bmd, mu, sigma):
return (bmd - mu) / sigma
# Generate prediction table for all drugs
def generate_predictions(medication_data, site, bmd, mu, sigma):
site_data = medication_data[medication_data['Site'] == site]
all_results = []
for _, row in site_data.iterrows():
drug = row['Medication']
predictions = {
'Year': ['0'],
'Year Index': [0], # Numeric x-axis for plotting
'Predicted BMD': [round(bmd, 3)],
'Predicted T-score': [round(calculate_tscore(bmd, mu, sigma), 1)]
}
year_index = 1
for year in row.index[1:-1]: # Skip 'Medication' and 'Site' columns
if not pd.isna(row[year]):
percentage_increase = row[year]
predicted_bmd = bmd * (1 + percentage_increase)
predicted_tscore = calculate_tscore(predicted_bmd, mu, sigma)
predictions['Year'].append(year.replace(" Year", "")) # Simplify year label
predictions['Year Index'].append(year_index) # Numeric x-axis
predictions['Predicted BMD'].append(round(predicted_bmd, 3))
predictions['Predicted T-score'].append(round(predicted_tscore, 1))
year_index += 1
all_results.append({'Drug': drug, 'Predictions': predictions})
return all_results
# Display results as table and plots
def display_results(predictions, site):
st.subheader(f"Predictions for {site}")
for result in predictions:
drug = result['Drug']
predictions = result['Predictions']
# Display table
st.write(f"### {drug}")
st.dataframe(pd.DataFrame(predictions))
# Plot BMD and T-score using Year Index
bmd_plot = go.Scatter(
x=predictions['Year Index'], y=predictions['Predicted BMD'], mode='lines+markers',
name='Predicted BMD', line=dict(color='blue')
)
tscore_plot = go.Scatter(
x=predictions['Year Index'], y=predictions['Predicted T-score'], mode='lines+markers',
name='Predicted T-score', line=dict(color='green')
)
# Combine plots in a single row
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(go.Figure(data=[bmd_plot], layout=go.Layout(
title=f"{drug} - Predicted BMD", xaxis_title="Year", yaxis_title="BMD (g/cm²)",
xaxis=dict(tickmode='array', tickvals=predictions['Year Index'], ticktext=predictions['Year'])
)))
with col2:
st.plotly_chart(go.Figure(data=[tscore_plot], layout=go.Layout(
title=f"{drug} - Predicted T-score", xaxis_title="Year", yaxis_title="T-score",
xaxis=dict(tickmode='array', tickvals=predictions['Year Index'], ticktext=predictions['Year'])
)))
# Generate summary of medications reaching the target T-score
def generate_goal_summary(predictions, target_tscore=-2.4):
def year_to_int(year):
# Convert "1st", "2nd", "3rd", etc., to numeric values
try:
return int(year.rstrip("stndrdth")) # Remove suffixes like "st", "nd", "rd", "th"
except ValueError:
return 0 # Default to 0 if year cannot be converted
goal_reached = []
for result in predictions:
drug = result['Drug']
predictions_data = result['Predictions']
for year, tscore in zip(predictions_data['Year'], predictions_data['Predicted T-score']):
if tscore >= target_tscore:
# Convert year to an integer using helper function
numeric_year = year_to_int(year)
goal_reached.append({'Medication': drug, 'Year': numeric_year})
break # Stop checking further years for this drug
# Sort by year to prioritize earlier achievement
goal_reached_sorted = sorted(goal_reached, key=lambda x: x['Year'])
return goal_reached_sorted
# Display summary of goal-reaching medications
def display_goal_summary(goal_summary):
st.subheader("Goal Treatment Summary (T-score ≥ -2.4)")
if not goal_summary:
st.info("No medications reach the target T-score.")
else:
summary_table = pd.DataFrame(goal_summary)
st.table(summary_table)
# Medication Selection with Collapsible Categories
def select_medications():
st.subheader("Select Medications to Display")
show_all = st.checkbox("Show All Medications", key="show_all")
selected_medications = []
if not show_all:
# Define categories and medications
categories = {
"Bisphosphonates": [
"Alendronate", "Risedronate", "Ibandronate oral",
"Zoledronate", "Ibandronate IV (3mg)"
],
"RANK Ligand Inhibitors": [
"Denosumab", "Denosumab + Teriparatide"
],
"Anabolic Agents": [
"Teriparatide", "Teriparatide + Denosumab"
],
"Sclerostin Inhibitors": [
"Romosozumab", "Romosozumab + Denosumab",
"Romosozumab + Alendronate", "Romosozumab + Ibandronate",
"Romosozumab + Zoledronate"
]
}
# Create collapsible sections
for category, medications in categories.items():
with st.expander(category):
for med in medications:
# Use a unique key for each checkbox
if st.checkbox(med, key=f"{category}_{med}"):
selected_medications.append(med)
else:
# Include all medications if "Show All" is selected
selected_medications = [
"Alendronate", "Risedronate", "Ibandronate oral",
"Zoledronate", "Ibandronate IV (3mg)", "Denosumab",
"Denosumab + Teriparatide", "Teriparatide",
"Teriparatide + Denosumab", "Romosozumab",
"Romosozumab + Denosumab", "Romosozumab + Alendronate",
"Romosozumab + Ibandronate", "Romosozumab + Zoledronate"
]
return selected_medications
# Streamlit UI
# Main function
def main():
st.title("BMD and T-score Prediction Tool")
# DEXA Machine Selection
dexa_machine = st.selectbox("DEXA Machine", ["LUNAR"])
# Gender Selection
gender = st.selectbox("Gender", ["Female", "Male"])
# Location (Site) Selection with Mapping
site_mapping = {
'Lumbar spine (L1-L4)': 'LS',
'Femoral Neck': 'FN',
'Total Hip': 'TH'
}
site_options = list(site_mapping.keys())
selected_site = st.selectbox("Select Region (Site)", site_options)
site = site_mapping[selected_site] # Map to the actual value in the dataset
# Input patient data
bmd_patient = st.number_input(
"Initial BMD",
min_value=0.000, max_value=2.000,
value=0.800, step=0.001,
format="%.3f"
)
# Medication Selection
selected_medications = select_medications() # Ensure this is only called once
# Load constants and medication data
medication_data = load_medication_data()
constants = REGRESSION_CONSTANTS[selected_site][gender]
# Generate and display predictions for selected medications
if st.button("Predict"):
all_predictions = generate_predictions(medication_data, site, bmd_patient, constants['mu'], constants['sigma'])
filtered_predictions = [pred for pred in all_predictions if pred['Drug'] in selected_medications]
if not filtered_predictions:
st.warning("No medications selected. Please select at least one medication or use the 'Show All' option.")
else:
# Generate and display goal treatment summary
goal_summary = generate_goal_summary(filtered_predictions, target_tscore=-2.4)
display_goal_summary(goal_summary)
# Display individual medication results
display_results(filtered_predictions, selected_site)
if __name__ == "__main__":
main()
|