File size: 7,963 Bytes
0f4785f 331fa49 0f4785f 331fa49 0f4785f 472a67b 0f4785f 472a67b 0f4785f 472a67b 0f4785f 331fa49 0f4785f 472a67b 0f4785f 53461be 1cab071 53461be 472a67b 0f4785f 331fa49 472a67b 331fa49 0f4785f 331fa49 0f4785f 331fa49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import streamlit as st
import pandas as pd
import plotly.graph_objs as go
# Step 1: Load the cleaned sheet based on the selected site
def load_clean_bmd_data(file_path, site):
sheet_name = ''
if site == 'Total Hip':
sheet_name = 'Clean TH avg rise BMD'
elif site == 'Femoral Neck':
sheet_name = 'clean FN avg rise BMD'
elif site == 'Lumbar Spine (L1-L4)':
sheet_name = 'clean LS avg rise BMD'
df_clean_bmd_data = pd.read_excel(file_path, sheet_name=sheet_name)
# Select relevant columns: Drug names and BMD percentage increases
df_cleaned = df_clean_bmd_data[['Unnamed: 0', '1st', '2nd', '3rd', '4th', '5th', '6th', '8th', '10th']]
# Rename the first column to 'Drug'
df_cleaned.columns = ['Drug', '1st', '2nd', '3rd', '4th', '5th', '6th', '8th', '10th']
# Remove any rows with missing drug names
df_cleaned = df_cleaned.dropna(subset=['Drug'])
return df_cleaned
# Step 2: Adjust constants based on patient's BMD and T-score
def adjust_constants(bmd_patient, tscore_patient, c_avg, c_sd):
# Adjust C_avg and C_sd based on patient's BMD and T-score
error = tscore_patient - (bmd_patient - c_avg) / c_sd
c_avg_new = c_avg + error * c_sd
c_sd_new = (bmd_patient - c_avg) / tscore_patient
return c_avg_new, c_sd_new
# Step 3: Calculate BMD increase after medication (corrected version)
def calculate_bmd_increase(baseline_bmd, percentage_increase):
return baseline_bmd * (1 + percentage_increase)
# Step 4: Create a table showing BMD prediction and T-score conversion for each year for each drug
def create_bmd_and_tscore_prediction_tables(df_bmd_data, selected_drugs, bmd_patient, tscore_patient, c_avg_new, c_sd_new):
years = ['1st', '2nd', '3rd', '4th', '5th', '6th', '8th', '10th']
drug_tables = {}
# Loop through each selected drug and generate the prediction table
for drug in selected_drugs:
predictions = [('0', bmd_patient, tscore_patient)] # Add initial value (Year 0)
for year in years:
if not pd.isna(df_bmd_data.loc[df_bmd_data['Drug'] == drug, year].values[0]):
percent_increase = df_bmd_data.loc[df_bmd_data['Drug'] == drug, year].values[0]
bmd_new = calculate_bmd_increase(bmd_patient, percent_increase) # Use baseline BMD
tscore_new = calculate_tscore_from_bmd(bmd_new, c_avg_new, c_sd_new) # Calculate predicted T-score
predictions.append((year, bmd_new, tscore_new))
# Create DataFrame for each drug
drug_table = pd.DataFrame(predictions, columns=['Year', 'Predicted BMD', 'Predicted T-score'])
drug_tables[drug] = drug_table
return drug_tables
# Step 5: Plot BMD and T-score as separate graphs side by side for each drug
def display_prediction_tables_and_plots(prediction_tables, baseline_bmd, baseline_tscore):
# Loop through each drug's prediction table
for drug, table in prediction_tables.items():
st.write(f"### {drug} Results")
# Display the prediction table for the current drug
st.dataframe(table)
# Create and display separate plots for each drug
years = list(table['Year'])
bmd_values = list(table['Predicted BMD'])
tscore_values = list(table['Predicted T-score'])
# Create BMD plot
trace_bmd = go.Scatter(x=years, y=bmd_values, mode='lines+markers', name=f'{drug} (BMD)', line=dict(color='blue'))
fig_bmd = go.Figure(data=[trace_bmd], layout=go.Layout(title=f'{drug} - Predicted BMD over Time', xaxis=dict(title='Years'), yaxis=dict(title='BMD (g/cm²)')))
# Create T-score plot
trace_tscore = go.Scatter(x=years, y=tscore_values, mode='lines+markers', name=f'{drug} (T-score)', line=dict(color='green'))
fig_tscore = go.Figure(data=[trace_tscore], layout=go.Layout(title=f'{drug} - Predicted T-score over Time', xaxis=dict(title='Years'), yaxis=dict(title='T-score')))
# Display the plots
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(fig_bmd)
with col2:
st.plotly_chart(fig_tscore)
# Step 6: Check if goal is achieved and show the predicted BMD and T-score for each year
goal_achieved = False
for i, row in table.iterrows():
if row['Predicted T-score'] >= -2.49:
st.success(f"Goal achieved for {drug} at year {row['Year']} with T-score = {row['Predicted T-score']:.2f}")
goal_achieved = True
break
if not goal_achieved:
st.warning(f"Goal not achieved for {drug}")
# Step 6: Calculate T-score from adjusted BMD
def calculate_tscore_from_bmd(bmd_patient, c_avg, c_sd):
return (bmd_patient - c_avg) / c_sd
# Main function to load data, run the application, and plot results with T-score labels
def main_with_separate_tables(file_path, bmd_patient, tscore_patient, C_avg_lunar, C_sd_lunar, selected_drugs, site):
# Step 1: Load and clean BMD data from the selected site (Total Hip, Femoral Neck, Lumbar Spine)
df_bmd_data = load_clean_bmd_data(file_path, site)
# Step 2: Adjust constants based on the patient's data
c_avg_new, c_sd_new = adjust_constants(bmd_patient, tscore_patient, C_avg_lunar, C_sd_lunar)
# Step 4: Create separate prediction tables for each selected drug
prediction_tables = create_bmd_and_tscore_prediction_tables(df_bmd_data, selected_drugs, bmd_patient, tscore_patient, c_avg_new, c_sd_new)
# Display baseline BMD and T-score
st.write(f"Baseline: BMD = {bmd_patient:.3f}, T-score = {tscore_patient:.2f}")
# Step 5: Display prediction tables and plots for each drug
display_prediction_tables_and_plots(prediction_tables, bmd_patient, tscore_patient)
# Streamlit UI
def main():
st.title("BMD and T-score Prediction Tool")
# Input patient data
bmd_patient = st.number_input("Initial BMD", min_value=0.0, max_value=2.0, value=0.635, step=0.001, format="%.3f")
tscore_patient = st.number_input("Initial T-score", min_value=-5.0, max_value=2.0, value=-2.5, step=0.01, format="%.2f")
# Site options (Total Hip, Femoral Neck, Lumbar Spine)
site_options = ['Total Hip', 'Femoral Neck', 'Lumbar Spine (L1-L4)']
site = st.selectbox("Select site", site_options)
# Drug options
drug_options = ['Teriparatide', 'Teriparatide + Denosumab', 'Denosumab', 'Denosumab + Teriparatide',
'Romosozumab', 'Romosozumab + Denosumab', 'Romosozumab + Alendronate',
'Romosozumab + Ibandronate', 'Romosozumab + Zoledronate', 'Alendronate',
'Risedronate', 'Ibandronate oral', 'Ibandronate IV (3mg)', 'Zoledronate']
# Add option to select multiple drugs
selected_drugs = st.multiselect("Select drugs to compare", drug_options)
# Set constants for each site
if site == 'Total Hip':
C_avg_lunar = 0.95 # Example: Average BMD for Total Hip from Excel (Lunar)
C_sd_lunar = 0.12
elif site == 'Femoral Neck':
C_avg_lunar = 0.905 # Example: Average BMD for Femoral Neck from Excel (Lunar)
C_sd_lunar = 0.116 # Example: SD for Femoral Neck (Lunar)
elif site == 'Lumbar Spine (L1-L4)':
C_avg_lunar = 1.097 # Example: Average BMD for Lumbar Spine (L1-L4) from Excel (Lunar)
C_sd_lunar = 0.128 # Example: SD for Lumbar Spine (L1-L4) (Lunar)
# Example file path
file_path = "BMD constant calculator.xlsx"
# ตรวจสอบว่ามีการเลือกยาแล้วหรือไม่
if len(selected_drugs) == 0:
st.warning("Please select at least one drug to compare.")
else:
# Run prediction and plot results
if st.button("Predict"):
main_with_separate_tables(file_path, bmd_patient, tscore_patient, C_avg_lunar, C_sd_lunar, selected_drugs, site)
if __name__ == "__main__":
main()
|