File size: 9,151 Bytes
3aca6ad
 
fe0e27c
 
 
 
 
 
20ec65f
 
 
 
 
 
 
 
 
 
 
 
fe0e27c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f0c46
 
 
 
 
 
fe0e27c
05f0c46
fe0e27c
 
 
 
 
 
 
05f0c46
fe0e27c
 
05f0c46
fe0e27c
 
 
 
05f0c46
fe0e27c
 
 
 
 
 
 
 
 
 
 
 
05f0c46
fe0e27c
05f0c46
fe0e27c
 
 
05f0c46
fe0e27c
 
 
 
 
 
 
05f0c46
 
fe0e27c
 
 
05f0c46
 
fe0e27c
 
a4acffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe0e27c
a4acffe
fe0e27c
 
 
3aca6ad
 
 
 
20ec65f
3aca6ad
 
 
 
 
 
 
 
 
 
 
fe0e27c
 
 
 
 
 
 
 
a4acffe
 
cf4318d
fe0e27c
 
20ec65f
3aca6ad
cf4318d
fe0e27c
cf4318d
 
 
 
 
 
a4acffe
 
 
 
 
cf4318d
fe0e27c
a4acffe
fe0e27c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#file_path = "cleaned_bmd_medication_data.xlsx"

import streamlit as st
import pandas as pd
import plotly.graph_objs as go

# Constants from linear regression
REGRESSION_CONSTANTS = {
    'Femoral Neck': {
        'Female': {'mu': 0.916852, 'sigma': 0.120754},
        'Male': {'mu': 0.9687385325352573, 'sigma': 0.121870698023835}
    },
    'Total Hip': {
        'Female': {'mu': 0.955439, 'sigma': 0.125406},
        'Male': {'mu': 0.967924895046735, 'sigma': 0.13081439619361657}
    },
    'Lumbar spine (L1-L4)': {
        'Female': {'mu': 1.131649, 'sigma': 0.139618},
        'Male': {'mu': 1.1309707991669353, 'sigma': 0.1201836924980611}
    }
}

# Load medication data
@st.cache_data
def load_medication_data():
    file_path = "cleaned_bmd_medication_data.xlsx"
    return pd.read_excel(file_path)

# Calculate predicted BMD after medication
def calculate_bmd(bmd, percentage_increase):
    return bmd * (1 + percentage_increase)

# Convert BMD to T-score
def calculate_tscore(bmd, mu, sigma):
    return (bmd - mu) / sigma

# Generate prediction table for all drugs
def generate_predictions(medication_data, site, bmd, mu, sigma):
    site_data = medication_data[medication_data['Site'] == site]
    all_results = []
    
    for _, row in site_data.iterrows():
        drug = row['Medication']
        predictions = {
            'Year': ['0'], 
            'Year Index': [0],  # Numeric x-axis for plotting
            'Predicted BMD': [round(bmd, 3)], 
            'Predicted T-score': [round(calculate_tscore(bmd, mu, sigma), 1)]
        }
        
        year_index = 1
        for year in row.index[1:-1]:  # Skip 'Medication' and 'Site' columns
            if not pd.isna(row[year]):
                percentage_increase = row[year]
                predicted_bmd = bmd * (1 + percentage_increase)
                predicted_tscore = calculate_tscore(predicted_bmd, mu, sigma)
                
                predictions['Year'].append(year.replace(" Year", ""))  # Simplify year label
                predictions['Year Index'].append(year_index)  # Numeric x-axis
                predictions['Predicted BMD'].append(round(predicted_bmd, 3))
                predictions['Predicted T-score'].append(round(predicted_tscore, 1))
                year_index += 1
        
        all_results.append({'Drug': drug, 'Predictions': predictions})
    return all_results


# Display results as table and plots
def display_results(predictions, site):
    st.subheader(f"Predictions for {site}")
    
    for result in predictions:
        drug = result['Drug']
        predictions = result['Predictions']
        
        # Display table
        st.write(f"### {drug}")
        st.dataframe(pd.DataFrame(predictions))
        
        # Plot BMD and T-score using Year Index
        bmd_plot = go.Scatter(
            x=predictions['Year Index'], y=predictions['Predicted BMD'], mode='lines+markers',
            name='Predicted BMD', line=dict(color='blue')
        )
        tscore_plot = go.Scatter(
            x=predictions['Year Index'], y=predictions['Predicted T-score'], mode='lines+markers',
            name='Predicted T-score', line=dict(color='green')
        )
        
        # Combine plots in a single row
        col1, col2 = st.columns(2)
        with col1:
            st.plotly_chart(go.Figure(data=[bmd_plot], layout=go.Layout(
                title=f"{drug} - Predicted BMD", xaxis_title="Year", yaxis_title="BMD (g/cm²)",
                xaxis=dict(tickmode='array', tickvals=predictions['Year Index'], ticktext=predictions['Year'])
            )))
        with col2:
            st.plotly_chart(go.Figure(data=[tscore_plot], layout=go.Layout(
                title=f"{drug} - Predicted T-score", xaxis_title="Year", yaxis_title="T-score",
                xaxis=dict(tickmode='array', tickvals=predictions['Year Index'], ticktext=predictions['Year'])
            )))

# Generate summary of medications reaching the target T-score
def generate_goal_summary(predictions, target_tscore=-2.4):
    def year_to_int(year):
        # Convert "1st", "2nd", "3rd", etc., to numeric values
        try:
            return int(year.rstrip("stndrdth"))  # Remove suffixes like "st", "nd", "rd", "th"
        except ValueError:
            return 0  # Default to 0 if year cannot be converted

    goal_reached = []
    
    for result in predictions:
        drug = result['Drug']
        predictions_data = result['Predictions']
        
        for year, tscore in zip(predictions_data['Year'], predictions_data['Predicted T-score']):
            if tscore >= target_tscore:
                # Convert year to an integer using helper function
                numeric_year = year_to_int(year)
                goal_reached.append({'Medication': drug, 'Year': numeric_year})
                break  # Stop checking further years for this drug

    # Sort by year to prioritize earlier achievement
    goal_reached_sorted = sorted(goal_reached, key=lambda x: x['Year'])
    return goal_reached_sorted

# Display summary of goal-reaching medications
def display_goal_summary(goal_summary):
    st.subheader("Goal Treatment Summary (T-score ≥ -2.4)")
    
    if not goal_summary:
        st.info("No medications reach the target T-score.")
    else:
        summary_table = pd.DataFrame(goal_summary)
        st.table(summary_table)

# Medication Selection with Collapsible Categories
def select_medications():
    st.subheader("Select Medications to Display")
    show_all = st.checkbox("Show All Medications", key="show_all")
    
    selected_medications = []
    if not show_all:
        # Define categories and medications
        categories = {
            "Bisphosphonates": [
                "Alendronate", "Risedronate", "Ibandronate oral", 
                "Zoledronate", "Ibandronate IV (3mg)"
            ],
            "RANK Ligand Inhibitors": [
                "Denosumab", "Denosumab + Teriparatide"
            ],
            "Anabolic Agents": [
                "Teriparatide", "Teriparatide + Denosumab"
            ],
            "Sclerostin Inhibitors": [
                "Romosozumab", "Romosozumab + Denosumab", 
                "Romosozumab + Alendronate", "Romosozumab + Ibandronate", 
                "Romosozumab + Zoledronate"
            ]
        }
        
        # Create collapsible sections
        for category, medications in categories.items():
            with st.expander(category):
                for med in medications:
                    # Use a unique key for each checkbox
                    if st.checkbox(med, key=f"{category}_{med}"):
                        selected_medications.append(med)
    else:
        # Include all medications if "Show All" is selected
        selected_medications = [
            "Alendronate", "Risedronate", "Ibandronate oral", 
            "Zoledronate", "Ibandronate IV (3mg)", "Denosumab", 
            "Denosumab + Teriparatide", "Teriparatide", 
            "Teriparatide + Denosumab", "Romosozumab", 
            "Romosozumab + Denosumab", "Romosozumab + Alendronate", 
            "Romosozumab + Ibandronate", "Romosozumab + Zoledronate"
        ]
    
    return selected_medications

# Streamlit UI
# Main function
def main():
    st.title("BMD and T-score Prediction Tool")
    
    # DEXA Machine Selection
    dexa_machine = st.selectbox("DEXA Machine", ["LUNAR"])
    
    # Gender Selection
    gender = st.selectbox("Gender", ["Female", "Male"])
    
    # Location (Site) Selection with Mapping
    site_mapping = {
        'Lumbar spine (L1-L4)': 'LS',
        'Femoral Neck': 'FN',
        'Total Hip': 'TH'
    }
    site_options = list(site_mapping.keys())
    selected_site = st.selectbox("Select Region (Site)", site_options)
    site = site_mapping[selected_site]  # Map to the actual value in the dataset
    
    # Input patient data
    bmd_patient = st.number_input(
        "Initial BMD",
        min_value=0.000, max_value=2.000,
        value=0.800, step=0.001,
        format="%.3f"
    )
    
    # Medication Selection
    selected_medications = select_medications()  # Ensure this is only called once
    
    # Load constants and medication data
    medication_data = load_medication_data()
    constants = REGRESSION_CONSTANTS[selected_site][gender]

    # Generate and display predictions for selected medications
    if st.button("Predict"):
        all_predictions = generate_predictions(medication_data, site, bmd_patient, constants['mu'], constants['sigma'])
        filtered_predictions = [pred for pred in all_predictions if pred['Drug'] in selected_medications]
        
        if not filtered_predictions:
            st.warning("No medications selected. Please select at least one medication or use the 'Show All' option.")
        else:
            # Generate and display goal treatment summary
            goal_summary = generate_goal_summary(filtered_predictions, target_tscore=-2.4)
            display_goal_summary(goal_summary)
            
            # Display individual medication results
            display_results(filtered_predictions, selected_site)


if __name__ == "__main__":
    main()