|
|
|
|
|
import streamlit as st |
|
import pandas as pd |
|
import plotly.graph_objs as go |
|
|
|
|
|
REGRESSION_CONSTANTS = { |
|
'FN': {'mu': 0.916852, 'sigma': 0.120754}, |
|
'TH': {'mu': 0.955439, 'sigma': 0.125406}, |
|
'LS': {'mu': 1.131649, 'sigma': 0.139618}, |
|
} |
|
|
|
|
|
@st.cache_data |
|
def load_medication_data(): |
|
file_path = ""cleaned_bmd_medication_data.xlsx"" |
|
return pd.read_excel(file_path) |
|
|
|
|
|
def calculate_bmd(bmd, percentage_increase): |
|
return bmd * (1 + percentage_increase) |
|
|
|
|
|
def calculate_tscore(bmd, mu, sigma): |
|
return (bmd - mu) / sigma |
|
|
|
|
|
def generate_predictions(medication_data, site, bmd, mu, sigma): |
|
site_data = medication_data[medication_data['Site'] == site] |
|
years = ['1st Year', '2nd Year', '3rd Year', '4th Year', '5th Year', '6th Year', '8th Year', '10th Year'] |
|
|
|
prediction_results = [] |
|
for _, row in site_data.iterrows(): |
|
drug = row['Medication'] |
|
bmd_predictions = [bmd] |
|
tscore_predictions = [calculate_tscore(bmd, mu, sigma)] |
|
|
|
for year in years: |
|
if not pd.isna(row[year]): |
|
bmd_new = calculate_bmd(bmd_predictions[-1], row[year]) |
|
tscore_new = calculate_tscore(bmd_new, mu, sigma) |
|
bmd_predictions.append(bmd_new) |
|
tscore_predictions.append(tscore_new) |
|
|
|
prediction_results.append({ |
|
'Drug': drug, |
|
'BMD Predictions': bmd_predictions, |
|
'T-score Predictions': tscore_predictions, |
|
}) |
|
return prediction_results |
|
|
|
|
|
def display_results(predictions, site): |
|
st.subheader(f"Predictions for {site}") |
|
|
|
for result in predictions: |
|
drug = result['Drug'] |
|
bmd_predictions = result['BMD Predictions'] |
|
tscore_predictions = result['T-score Predictions'] |
|
years = ['0', '1st', '2nd', '3rd', '4th', '5th', '6th', '8th', '10th'] |
|
|
|
|
|
bmd_predictions = [f"{bmd:.3f}" for bmd in bmd_predictions] |
|
tscore_predictions = [f"{tscore:.1f}" for tscore in tscore_predictions] |
|
|
|
|
|
data = { |
|
'Year': years[:len(bmd_predictions)], |
|
'Predicted BMD': bmd_predictions, |
|
'Predicted T-score': tscore_predictions, |
|
} |
|
st.write(f"### {drug}") |
|
st.dataframe(pd.DataFrame(data)) |
|
|
|
|
|
fig_bmd = go.Scatter(x=data['Year'], y=[float(bmd) for bmd in bmd_predictions], mode='lines+markers', name='BMD') |
|
fig_tscore = go.Scatter(x=data['Year'], y=[float(tscore) for tscore in tscore_predictions], mode='lines+markers', name='T-score') |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.plotly_chart(go.Figure(data=[fig_bmd], layout=go.Layout(title=f"{drug} - Predicted BMD", xaxis_title="Year", yaxis_title="BMD (g/cm²)"))) |
|
with col2: |
|
st.plotly_chart(go.Figure(data=[fig_tscore], layout=go.Layout(title=f"{drug} - Predicted T-score", xaxis_title="Year", yaxis_title="T-score"))) |
|
|
|
|
|
def main(): |
|
st.title("BMD and T-score Prediction Tool") |
|
|
|
|
|
bmd_patient = st.number_input("Initial BMD", min_value=0.0, max_value=2.0, value=0.8, step=0.01) |
|
site_options = ['FN', 'TH', 'LS'] |
|
site = st.selectbox("Select Region (Site)", site_options) |
|
|
|
|
|
constants = REGRESSION_CONSTANTS[site] |
|
medication_data = load_medication_data() |
|
|
|
|
|
if st.button("Predict"): |
|
predictions = generate_predictions(medication_data, site, bmd_patient, constants['mu'], constants['sigma']) |
|
display_results(predictions, site) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|