Rathapoom commited on
Commit
3e51adb
·
verified ·
1 Parent(s): 472a67b

Delete app(backup).py

Browse files
Files changed (1) hide show
  1. app(backup).py +0 -165
app(backup).py DELETED
@@ -1,165 +0,0 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import plotly.graph_objs as go
4
-
5
- # Step 1: Load the cleaned sheet based on the selected site
6
- def load_clean_bmd_data(file_path, site):
7
- sheet_name = ''
8
- if site == 'Total Hip':
9
- sheet_name = 'Clean TH avg rise BMD'
10
- elif site == 'Femoral Neck':
11
- sheet_name = 'clean FN avg rise BMD'
12
- elif site == 'Lumbar Spine (L1-L4)':
13
- sheet_name = 'clean LS avg rise BMD'
14
-
15
- df_clean_bmd_data = pd.read_excel(file_path, sheet_name=sheet_name)
16
-
17
- # Select relevant columns: Drug names and BMD percentage increases
18
- df_cleaned = df_clean_bmd_data[['Unnamed: 0', '1st', '2nd', '3rd', '4th', '5th', '6th', '8th', '10th']]
19
-
20
- # Rename the first column to 'Drug'
21
- df_cleaned.columns = ['Drug', '1st', '2nd', '3rd', '4th', '5th', '6th', '8th', '10th']
22
-
23
- # Remove any rows with missing drug names
24
- df_cleaned = df_cleaned.dropna(subset=['Drug'])
25
-
26
- return df_cleaned
27
-
28
- # Step 2: Adjust constants based on patient's BMD and T-score
29
- def adjust_constants(bmd_patient, tscore_patient, c_avg, c_sd):
30
- # Adjust C_avg and C_sd based on patient's BMD and T-score
31
- error = tscore_patient - (bmd_patient - c_avg) / c_sd
32
- c_avg_new = c_avg + error * c_sd
33
- c_sd_new = (bmd_patient - c_avg) / tscore_patient
34
- return c_avg_new, c_sd_new
35
-
36
- # Step 3: Calculate BMD increase after medication (corrected version)
37
- def calculate_bmd_increase(baseline_bmd, percentage_increase):
38
- return baseline_bmd * (1 + percentage_increase)
39
-
40
- # Step 4: Create a table showing BMD prediction and T-score conversion for each year for each drug
41
- def create_bmd_and_tscore_prediction_tables(df_bmd_data, selected_drugs, bmd_patient, c_avg_new, c_sd_new):
42
- years = ['1st', '2nd', '3rd', '4th', '5th', '6th', '8th', '10th']
43
- drug_tables = {}
44
-
45
- # Loop through each selected drug and generate the prediction table
46
- for drug in selected_drugs:
47
- predictions = []
48
- for year in years:
49
- if not pd.isna(df_bmd_data.loc[df_bmd_data['Drug'] == drug, year].values[0]):
50
- percent_increase = df_bmd_data.loc[df_bmd_data['Drug'] == drug, year].values[0]
51
- bmd_new = calculate_bmd_increase(bmd_patient, percent_increase) # Use baseline BMD
52
- tscore_new = calculate_tscore_from_bmd(bmd_new, c_avg_new, c_sd_new) # Calculate predicted T-score
53
- predictions.append((year, bmd_new, tscore_new))
54
-
55
- # Create DataFrame for each drug
56
- drug_table = pd.DataFrame(predictions, columns=['Year', 'Predicted BMD', 'Predicted T-score'])
57
- drug_tables[drug] = drug_table
58
-
59
- return drug_tables
60
-
61
- # Step 5: Plot BMD and T-score as separate graphs side by side for each drug
62
- def display_prediction_tables_and_plots(prediction_tables, baseline_bmd, baseline_tscore):
63
- # Loop through each drug's prediction table
64
- for drug, table in prediction_tables.items():
65
- st.write(f"### {drug} Results")
66
-
67
- # Display the prediction table for the current drug
68
- st.dataframe(table)
69
-
70
- # Create and display separate plots for each drug
71
- years = ['0'] + list(table['Year'])
72
- bmd_values = [baseline_bmd] + list(table['Predicted BMD'])
73
- tscore_values = [baseline_tscore] + list(table['Predicted T-score'])
74
-
75
- # Create BMD plot
76
- trace_bmd = go.Scatter(x=years, y=bmd_values, mode='lines+markers', name=f'{drug} (BMD)', line=dict(color='blue'))
77
- fig_bmd = go.Figure(data=[trace_bmd], layout=go.Layout(title=f'{drug} - Predicted BMD over Time', xaxis=dict(title='Years'), yaxis=dict(title='BMD (g/cm²)')))
78
-
79
- # Create T-score plot
80
- trace_tscore = go.Scatter(x=years, y=tscore_values, mode='lines+markers', name=f'{drug} (T-score)', line=dict(color='green'))
81
- fig_tscore = go.Figure(data=[trace_tscore], layout=go.Layout(title=f'{drug} - Predicted T-score over Time', xaxis=dict(title='Years'), yaxis=dict(title='T-score')))
82
-
83
- # Display the plots
84
- col1, col2 = st.columns(2)
85
- with col1:
86
- st.plotly_chart(fig_bmd)
87
- with col2:
88
- st.plotly_chart(fig_tscore)
89
-
90
- # Step 6: Check if goal is achieved and show the predicted BMD and T-score for each year
91
- goal_achieved = False
92
- for i, row in table.iterrows():
93
- if row['Predicted T-score'] >= -2.49:
94
- st.success(f"Goal achieved for {drug} at year {row['Year']} with T-score = {row['Predicted T-score']:.2f}")
95
- goal_achieved = True
96
- break
97
- if not goal_achieved:
98
- st.warning(f"Goal not achieved for {drug}")
99
-
100
- # Step 6: Calculate T-score from adjusted BMD
101
- def calculate_tscore_from_bmd(bmd_patient, c_avg, c_sd):
102
- return (bmd_patient - c_avg) / c_sd
103
-
104
- # Main function to load data, run the application, and plot results with T-score labels
105
- def main_with_separate_tables(file_path, bmd_patient, tscore_patient, C_avg_lunar, C_sd_lunar, selected_drugs, site):
106
- # Step 1: Load and clean BMD data from the selected site (Total Hip, Femoral Neck, Lumbar Spine)
107
- df_bmd_data = load_clean_bmd_data(file_path, site)
108
-
109
- # Step 2: Adjust constants based on the patient's data
110
- c_avg_new, c_sd_new = adjust_constants(bmd_patient, tscore_patient, C_avg_lunar, C_sd_lunar)
111
-
112
- # Step 4: Create separate prediction tables for each selected drug
113
- prediction_tables = create_bmd_and_tscore_prediction_tables(df_bmd_data, selected_drugs, bmd_patient, c_avg_new, c_sd_new)
114
-
115
- # Display baseline BMD and T-score
116
- st.write(f"Baseline: BMD = {bmd_patient:.3f}, T-score = {tscore_patient:.2f}")
117
-
118
- # Step 5: Display prediction tables and plots for each drug
119
- display_prediction_tables_and_plots(prediction_tables, bmd_patient, tscore_patient)
120
-
121
- # Streamlit UI
122
- def main():
123
- st.title("BMD and T-score Prediction Tool")
124
-
125
- # Site options (Total Hip, Femoral Neck, Lumbar Spine)
126
- site_options = ['Total Hip', 'Femoral Neck', 'Lumbar Spine (L1-L4)']
127
- site = st.selectbox("Select site", site_options)
128
-
129
- # Input patient data
130
- bmd_patient = st.number_input("Initial BMD", min_value=0.0, max_value=2.0, value=0.635, step=0.001, format="%.3f")
131
- tscore_patient = st.number_input("Initial T-score", min_value=-5.0, max_value=2.0, value=-2.5, step=0.01, format="%.2f")
132
-
133
- # Drug options
134
- drug_options = ['Teriparatide', 'Teriparatide + Denosumab', 'Denosumab', 'Denosumab + Teriparatide',
135
- 'Romosozumab', 'Romosozumab + Denosumab', 'Romosozumab + Alendronate',
136
- 'Romosozumab + Ibandronate', 'Romosozumab + Zoledronate', 'Alendronate',
137
- 'Risedronate', 'Ibandronate oral', 'Ibandronate IV (3mg)', 'Zoledronate']
138
-
139
- # Add option to select multiple drugs
140
- selected_drugs = st.multiselect("Select drugs to compare", drug_options)
141
-
142
- # Set constants for each site
143
- if site == 'Total Hip':
144
- C_avg_lunar = 0.95 # Example: Average BMD for Total Hip from Excel (Lunar)
145
- C_sd_lunar = 0.12 # Example: SD for Total Hip (Lunar)
146
- elif site == 'Femoral Neck':
147
- C_avg_lunar = 0.905 # Example: Average BMD for Femoral Neck from Excel (Lunar)
148
- C_sd_lunar = 0.116 # Example: SD for Femoral Neck (Lunar)
149
- elif site == 'Lumbar Spine (L1-L4)':
150
- C_avg_lunar = 1.097 # Example: Average BMD for Lumbar Spine (L1-L4) from Excel (Lunar)
151
- C_sd_lunar = 0.128 # Example: SD for Lumbar Spine (L1-L4) (Lunar)
152
-
153
- # Example file path
154
- file_path = "BMD constant calculator.xlsx"
155
-
156
- # ตรวจสอบว่ามีการเลือกยาแล้วหรือไม่
157
- if len(selected_drugs) == 0:
158
- st.warning("Please select at least one drug to compare.")
159
- else:
160
- # Run prediction and plot results
161
- if st.button("Predict"):
162
- main_with_separate_tables(file_path, bmd_patient, tscore_patient, C_avg_lunar, C_sd_lunar, selected_drugs, site)
163
-
164
- if __name__ == "__main__":
165
- main()