Update app.py
Browse files
app.py
CHANGED
@@ -30,21 +30,13 @@ def generate_predictions(medication_data, site, bmd, mu, sigma):
|
|
30 |
site_data = medication_data[medication_data['Site'] == site]
|
31 |
all_results = []
|
32 |
|
33 |
-
if site_data.empty:
|
34 |
-
st.warning(f"No data available for the selected site: {site}")
|
35 |
-
return all_results # Return empty results
|
36 |
-
|
37 |
for _, row in site_data.iterrows():
|
38 |
drug = row['Medication']
|
39 |
predictions = {'Year': ['0'], 'Predicted BMD': [round(bmd, 3)], 'Predicted T-score': [round(calculate_tscore(bmd, mu, sigma), 1)]}
|
40 |
|
41 |
-
st.write(f"Processing drug: {drug}")
|
42 |
-
|
43 |
for year in row.index[1:-1]: # Skip 'Medication' and 'Site' columns
|
44 |
if not pd.isna(row[year]):
|
45 |
percentage_increase = row[year]
|
46 |
-
st.write(f"Year: {year}, Percentage Increase: {percentage_increase}")
|
47 |
-
|
48 |
predicted_bmd = bmd * (1 + percentage_increase)
|
49 |
predicted_tscore = calculate_tscore(predicted_bmd, mu, sigma)
|
50 |
|
@@ -118,20 +110,13 @@ def main():
|
|
118 |
|
119 |
# Load constants and medication data
|
120 |
medication_data = load_medication_data()
|
121 |
-
st.write("Loaded Medication Data:")
|
122 |
-
st.write(medication_data.head()) # Display the loaded data for verification
|
123 |
-
|
124 |
constants = REGRESSION_CONSTANTS.get(selected_site, {})
|
125 |
-
if not constants:
|
126 |
-
st.warning(f"No constants available for the selected site: {selected_site}")
|
127 |
-
return
|
128 |
|
129 |
# Generate and display predictions
|
130 |
if st.button("Predict"):
|
131 |
-
st.write("Prediction started...")
|
132 |
predictions = generate_predictions(medication_data, site, bmd_patient, constants['mu'], constants['sigma'])
|
133 |
display_results(predictions, selected_site)
|
134 |
|
135 |
-
|
136 |
if __name__ == "__main__":
|
137 |
main()
|
|
|
|
30 |
site_data = medication_data[medication_data['Site'] == site]
|
31 |
all_results = []
|
32 |
|
|
|
|
|
|
|
|
|
33 |
for _, row in site_data.iterrows():
|
34 |
drug = row['Medication']
|
35 |
predictions = {'Year': ['0'], 'Predicted BMD': [round(bmd, 3)], 'Predicted T-score': [round(calculate_tscore(bmd, mu, sigma), 1)]}
|
36 |
|
|
|
|
|
37 |
for year in row.index[1:-1]: # Skip 'Medication' and 'Site' columns
|
38 |
if not pd.isna(row[year]):
|
39 |
percentage_increase = row[year]
|
|
|
|
|
40 |
predicted_bmd = bmd * (1 + percentage_increase)
|
41 |
predicted_tscore = calculate_tscore(predicted_bmd, mu, sigma)
|
42 |
|
|
|
110 |
|
111 |
# Load constants and medication data
|
112 |
medication_data = load_medication_data()
|
|
|
|
|
|
|
113 |
constants = REGRESSION_CONSTANTS.get(selected_site, {})
|
|
|
|
|
|
|
114 |
|
115 |
# Generate and display predictions
|
116 |
if st.button("Predict"):
|
|
|
117 |
predictions = generate_predictions(medication_data, site, bmd_patient, constants['mu'], constants['sigma'])
|
118 |
display_results(predictions, selected_site)
|
119 |
|
|
|
120 |
if __name__ == "__main__":
|
121 |
main()
|
122 |
+
|