Spaces:
Sleeping
Sleeping
File size: 8,289 Bytes
5925eac 842fce5 dc5209b 5925eac 842fce5 5925eac 842fce5 5925eac f169455 dc5209b 5925eac dc5209b 5925eac dc5209b 5925eac dc5209b f169455 dc5209b f169455 dc5209b f169455 dc5209b 5925eac dc5209b f169455 5925eac f169455 c0d20a2 5925eac f169455 5925eac f169455 5925eac f169455 5925eac f169455 5925eac dc5209b f169455 dc5209b f169455 5925eac dc5209b 5925eac f169455 5925eac c0d20a2 5925eac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
import os
import json
from data_service import DataAssessmentService
from sheets_integration import SheetsLogger
from datetime import datetime
# Initialize services
service = DataAssessmentService(api_key=os.environ.get("OPENAI_API_KEY"))
sheets_logger = SheetsLogger()
# Department mapping from abbreviations to full names
DEPARTMENTS = {
"Executive Management": "บริหาร ผอ รอง ผู้ช่วย",
"Education Support": "สนับสนุนการศึกษา",
"Medicine": "MED",
"Cardiology": "Cardio",
"Gastroenterology": "GI",
"Medical Oncology": "Onco MED",
"Hematology": "Hematology",
"Operating Room": "OR",
"Surgery": "Sx",
"Orthopedics": "Ortho",
"Obstetrics and Gynecology": "OBgyne",
"Ophthalmology": "Oph",
"Ear, Nose, and Throat": "ENT",
"Anesthesiology": "Anes",
"Emergency Medicine & EMS": "ER and EMS",
"Pediatrics": "PED",
"Family Medicine & Preventive Medicine": "GP Fammed preventive med",
"Psychiatry": "Psych",
"Physical Medicine & Rehabilitation": "PM&R Physiotherapy",
"Pathology": "Patho",
"Radiology": "Xray",
"Radiation Oncology": "Onco radiology",
"Cyclotron": "Cyclotron",
"Inpatient Department": "IPD",
"Outpatient Department": "OPD",
"Pharmacy": "Pharmacy",
"Dentistry": "dentistry",
"Nutrition": "Nutrition",
"Medical Records": "เวชระเบียน",
"Finance": "การเงิน",
"Other": "Other"
}
# Frequency options
FREQUENCIES = ["One-time request", "Weekly", "Monthly"]
# Urgency options
URGENCY = ["Within a week", "Within a month", "Within a year"]
# Example requests
EXAMPLE_REQUESTS = """
### Example 1: Clinical Data Request
I need OPD patient statistics for the Cardiology department from January to June 2024, including daily patient volume, types of cardiac conditions (ICD-10 codes), average waiting times, and number of follow-up vs. new cases. This data will be used for department capacity planning and resource allocation.
### Example 2: Quality Improvement Request
Requesting waiting time analysis for all OPD clinics for Q1 2024, including:
- Registration to first nurse contact time
- Nurse station to doctor examination time
- Doctor examination duration
- Time at pharmacy
- Total visit duration
Break down by day of week and time slots (morning/afternoon). This data will help identify service bottlenecks.
### Example 3: Department Performance Analysis
Need Emergency Department performance data for March 2024:
- Daily patient volume by triage level
- Door-to-doctor times
- Length of stay in ED
- Admission rates
- Transfer rates to other departments
Purpose: Monthly performance review and staff allocation planning.
"""
def format_user_summary(analysis_result):
"""Format analysis result into user-friendly summary"""
available = analysis_result.get("data_availability", {}).get("available_reports", [])
data_lake = analysis_result.get("data_lake_requirements", {}).get("reports_needed", [])
unavailable = analysis_result.get("unavailable_data", [])
interpretation = analysis_result.get("request_analysis", {}).get("interpretation", "")
summary = [
"### Summary of Your Request",
f"**What you need**: {interpretation}\n",
"\n**Data Availability Status:**\n"
]
if available:
summary.append("✅ **Available in Web Data System:**")
for report in available:
summary.append(f"- {report['name']}")
summary.append(f"\nEstimated processing time: 3 working days\n")
if data_lake:
summary.append("🔄 **Requires Additional Database Query:**")
for report in data_lake:
summary.append(f"- {report['report_type']}")
summary.append(f"\nEstimated processing time: 2 weeks\n")
if unavailable:
summary.append("❌ **Data Not Currently Available:**")
for item in unavailable:
summary.append(f"- {item['report_type']}")
summary.append("\nRecommendation: Schedule a meeting to discuss alternative data sources or solutions\n")
return "\n".join(summary)
def process_request(name, employee_id, email, department, other_dept, request_details, frequency, urgency):
# Validate inputs
if not all([name, employee_id, email, request_details]):
return "Please fill in all required fields.", None
# Combine department info
final_department = other_dept if department == "Other" else department
try:
# Process the request through GPT
result = service.assess_request(request_details)
# Create user-friendly summary
user_summary = format_user_summary(result)
# Prepare data for logging
sheet_data = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"name": name,
"employee_id": employee_id,
"email": email,
"department": final_department,
"request_details": request_details,
"frequency": frequency,
"urgency": urgency,
"user_summary": user_summary,
"system_analysis": json.dumps(result, ensure_ascii=False)
}
# Log to Google Sheets
sheets_logger.log_request(sheet_data)
return user_summary, result
except Exception as e:
error_message = f"Error processing request: {str(e)}"
return error_message, None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Hospital Data Request System")
gr.Markdown("Please fill in the following information to request data access.")
with gr.Row():
with gr.Column():
name = gr.Textbox(
label="Full Name*",
placeholder="Enter your full name"
)
employee_id = gr.Textbox(
label="Employee ID*",
placeholder="Enter your employee ID"
)
email = gr.Textbox(
label="Email*",
placeholder="Enter your email for contact"
)
with gr.Row():
with gr.Column():
department = gr.Dropdown(
choices=list(DEPARTMENTS.keys()),
label="Department*",
info="Select your department"
)
other_dept = gr.Textbox(
label="Other Department",
placeholder="Specify your department if not in the list",
visible=False
)
department.change(
fn=lambda x: gr.update(visible=x=="Other"),
inputs=[department],
outputs=[other_dept]
)
with gr.Accordion("📝 Click here to see example requests", open=False):
gr.Markdown(EXAMPLE_REQUESTS)
with gr.Row():
request_details = gr.Textbox(
label="Request Details*",
placeholder="Please describe in detail what data you need, including time period, specific parameters, etc.",
lines=5
)
with gr.Row():
with gr.Column():
frequency = gr.Dropdown(
choices=FREQUENCIES,
label="Request Frequency*"
)
urgency = gr.Dropdown(
choices=URGENCY,
label="Urgency Level*"
)
submit_btn = gr.Button("Submit Request")
with gr.Row():
user_output = gr.Markdown(label="Request Summary")
with gr.Accordion("Technical Analysis (For Data Team)", open=False):
tech_output = gr.JSON()
submit_btn.click(
fn=process_request,
inputs=[name, employee_id, email, department, other_dept,
request_details, frequency, urgency],
outputs=[user_output, tech_output]
)
gr.Markdown("""
### Notes:
- Fields marked with * are required
- Please provide detailed information about the data you need
- Include specific time periods and parameters
- Clearly state the purpose of your request
- All communications will be sent to the provided email
""")
if __name__ == "__main__":
demo.launch() |