Spaces:
Sleeping
Sleeping
# gpt_analyzer.py | |
import json | |
from openai import OpenAI | |
from typing import Dict, List, Any | |
class GPTAnalyzer: | |
def __init__(self, api_key: str): | |
self.client = OpenAI(api_key=api_key) | |
def analyze_request(self, request_text: str, available_categories: List[str]) -> Dict[str, Any]: | |
prompt = f""" | |
As a hospital data analyst, analyze this data request: | |
"{request_text}" | |
Consider these available data sources in hospital Web Data system: | |
{json.dumps(available_categories, indent=2, ensure_ascii=False)} | |
Return JSON with this structure: | |
{{ | |
"required_reports": [ | |
{{ | |
"category": "Which category (OPD/IPD/PCT/etc)", | |
"report_type": "Specific report name needed", | |
"fields_needed": ["List of required fields"], | |
"filters": {{ | |
"date_range": "Required date range if specified", | |
"other_filters": ["Other filters needed"] | |
}} | |
}} | |
], | |
"interpretation": "Brief explanation of what data is needed", | |
"confidence_score": "HIGH/MEDIUM/LOW" | |
}} | |
""" | |
try: | |
response = self.client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "system", | |
"content": "You are a healthcare data analyst expert who understands hospital information systems." | |
}, | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
], | |
model="gpt-4o-mini", | |
response_format={ "type": "json_object" } | |
) | |
return json.loads(response.choices[0].message.content) | |
except Exception as e: | |
return {"error": str(e)} |