Spaces:
Sleeping
Sleeping
import streamlit as st | |
import openai | |
from openai import OpenAI | |
import time | |
import gspread | |
from oauth2client.service_account import ServiceAccountCredentials | |
import PyPDF2 | |
import io | |
from datetime import datetime | |
from PIL import Image | |
# Add some custom CSS to improve the layout | |
st.markdown(""" | |
<style> | |
.stImage { | |
text-align: center; | |
display: block; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
.stTitle { | |
text-align: center; | |
padding-bottom: 20px; | |
} | |
div[data-testid="stVerticalBlock"] > div:has(div.stButton) { | |
text-align: center; | |
padding: 10px 0; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Constants | |
WORD_LIMIT = 11000 | |
DAILY_API_LIMIT = 30 # Set your desired limit per user per day | |
# Set up OpenAI client | |
client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"]) | |
# Google Sheets setup | |
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"] | |
creds = ServiceAccountCredentials.from_json_keyfile_name("genexam-2c8c645ecc0d.json", scope) | |
client_gs = gspread.authorize(creds) | |
sheet = client_gs.open("GeneXam user").sheet1 | |
def check_user_in_sheet(username): | |
"""Check if user exists in sheet""" | |
try: | |
users_list = sheet.col_values(1) # UserID column | |
if username in users_list: | |
return True | |
return False | |
except Exception as e: | |
st.error(f"Error checking user: {str(e)}") | |
return False | |
def get_user_stats(username): | |
"""Get user's current API usage statistics""" | |
try: | |
users_list = sheet.col_values(1) # UserID column | |
row_number = users_list.index(username) + 1 | |
daily_count = int(sheet.cell(row_number, 2).value) # DailyAPICount | |
total_count = int(sheet.cell(row_number, 3).value) # TotalAPICount | |
last_used = sheet.cell(row_number, 4).value # LastUsedDate | |
return { | |
'daily_count': daily_count, | |
'total_count': total_count, | |
'last_used': last_used | |
} | |
except Exception as e: | |
st.error(f"Error getting user stats: {str(e)}") | |
return None | |
def update_api_usage(username): | |
"""Update both daily and total API usage counts""" | |
try: | |
users_list = sheet.col_values(1) | |
row_number = users_list.index(username) + 1 | |
today = datetime.now().strftime('%Y-%m-%d') | |
# Get current values | |
stats = get_user_stats(username) | |
if not stats: | |
return False, "Error retrieving user statistics" | |
# Reset daily count if it's a new day | |
daily_count = stats['daily_count'] | |
if stats['last_used'] != today: | |
daily_count = 0 | |
# Check daily limit | |
if daily_count >= DAILY_API_LIMIT: | |
return False, f"You have reached your daily limit of {DAILY_API_LIMIT} generations. Please try again tomorrow." | |
# Update counts | |
new_daily_count = daily_count + 1 | |
new_total_count = stats['total_count'] + 1 | |
# Update all values in sheet | |
sheet.update_cell(row_number, 2, new_daily_count) # Update DailyAPICount | |
sheet.update_cell(row_number, 3, new_total_count) # Update TotalAPICount | |
sheet.update_cell(row_number, 4, today) # Update LastUsedDate | |
return True, None | |
except Exception as e: | |
return False, f"Error updating API usage: {str(e)}" | |
def extract_text_from_pdf(pdf_file): | |
"""Simple PDF text extraction with word limit check""" | |
try: | |
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file.read())) | |
text_content = "" | |
for page in pdf_reader.pages: | |
text_content += page.extract_text() + "\n" | |
word_count = len(text_content.split()) | |
if word_count > WORD_LIMIT: | |
return None, f"PDF content exceeds {WORD_LIMIT:,} words (contains {word_count:,} words). Please use a shorter document." | |
return text_content, None | |
except Exception as e: | |
return None, f"Error processing PDF: {str(e)}" | |
def generate_questions_with_retry(username, knowledge_material, question_type, cognitive_level, extra_instructions, case_based, num_choices=None, max_retries=3): | |
"""Generate questions and update API usage""" | |
# Check and update API usage before generating | |
can_generate, error_message = update_api_usage(username) | |
if not can_generate: | |
st.error(error_message) | |
return None | |
# Adjust number of questions based on type | |
if question_type == "Multiple Choice": | |
num_questions = 3 | |
format_instructions = f""" | |
For each multiple choice question: | |
1. Present the question clearly | |
2. Provide {num_choices} choices labeled with A, B, C{', D' if num_choices > 3 else ''}{', E' if num_choices > 4 else ''} after get new line from question | |
3. After all questions, provide an ANSWER KEY section with: | |
- The correct answer letter for each question | |
- A brief explanation of why this is the correct answer | |
""" | |
elif question_type == "Fill in the Blank": | |
num_questions = 10 | |
format_instructions = """ | |
For each fill-in-the-blank question: | |
1. Present the question with a clear blank space indicated by _____ | |
2. After all questions, provide an ANSWER KEY section with: | |
- The correct answer for each blank | |
- A brief explanation of why this answer is correct | |
- Any alternative acceptable answers if applicable | |
""" | |
elif question_type == "True/False": | |
num_questions = 5 | |
format_instructions = """ | |
For each true/false question: | |
1. Present the statement clearly | |
2. After all questions, provide an ANSWER KEY section with: | |
- Whether the statement is True or False | |
- A detailed explanation of why the statement is true or false | |
- The specific part of the source material that supports this answer | |
""" | |
else: # Open-ended | |
num_questions = 3 | |
format_instructions = """ | |
For each open-ended question: | |
1. Present the question clearly | |
2. After all questions, provide an ANSWER KEY section with: | |
- A structured scoring checklist of key points (minimum 3-5 points per question) | |
- Each key point should be worth a specific number of marks | |
- Total marks available for each question | |
- Sample answer that would receive full marks | |
- Common points that students might miss | |
""" | |
# Base prompt | |
prompt = f"""Generate {num_questions} {question_type.lower()} exam questions based on {cognitive_level.lower()} level from the following material: | |
{knowledge_material} | |
{format_instructions} | |
{extra_instructions} | |
Please format the output clearly with: | |
1. Questions section (numbered 1, 2, 3, etc.) | |
2. Answer Key section (clearly separated from questions) | |
3. Each answer should include explanation for better understanding | |
Make sure all questions and answers are directly related to the provided material.""" | |
# Modify prompt for case-based medical situations | |
if case_based: | |
prompt = f"""Generate {num_questions} {question_type.lower()} case-based medical exam questions based on {cognitive_level.lower()} level. | |
Use this material as the medical knowledge base: | |
{knowledge_material} | |
Each question should: | |
1. Start with a medical case scenario/patient presentation | |
2. Include relevant clinical details | |
3. Ask about diagnosis, treatment, or management | |
4. Be at {cognitive_level.lower()} cognitive level | |
{format_instructions} | |
{extra_instructions} | |
Please format the output with: | |
1. Cases and Questions (numbered 1, 2, 3, etc.) | |
2. Detailed Answer Key section including: | |
- Correct answers | |
- Clinical reasoning | |
- Key diagnostic or treatment considerations | |
- Common pitfalls to avoid""" | |
retries = 0 | |
while retries < max_retries: | |
try: | |
response = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[ | |
{"role": "system", "content": "You are an expert exam question generator with deep knowledge in medical education. Create clear, well-structured questions with detailed answer keys and explanations."}, | |
{"role": "user", "content": prompt} | |
], | |
temperature=0.7, | |
max_tokens=3000 # Increased to accommodate answers and explanations | |
) | |
return response.choices[0].message.content | |
except Exception as e: | |
retries += 1 | |
st.warning(f"Attempt {retries} failed. Retrying... Error: {str(e)}") | |
if retries == max_retries: | |
st.error(f"Failed to generate questions after {max_retries} attempts. Error: {str(e)}") | |
return None | |
time.sleep(2) | |
# Main Streamlit interface | |
# Initialize session state variables | |
if 'login_step' not in st.session_state: | |
st.session_state.login_step = 'username' | |
if 'username' not in st.session_state: | |
st.session_state.username = None | |
# Login system | |
if st.session_state.username is None: | |
# Center align the content | |
col1, col2, col3 = st.columns([1,2,1]) | |
with col2: | |
# Display logo | |
st.image("GenExam.png", width=200) # Assuming the image is saved as logo.png | |
st.title("Login") | |
username_input = st.text_input("Enter your username:") | |
if st.session_state.login_step == 'username' and st.button("Login", use_container_width=True): | |
if username_input: | |
if check_user_in_sheet(username_input): | |
stats = get_user_stats(username_input) | |
if stats: | |
st.success(f"Welcome, {username_input}! 👋") | |
st.info(f""" | |
📊 Your API Usage Statistics: | |
- Today's Usage: {stats['daily_count']}/{DAILY_API_LIMIT} generations | |
- Total All-Time Usage: {stats['total_count']} generations | |
""") | |
st.session_state.login_step = 'enter_app' | |
else: | |
st.warning("Username not found. Please try again.") | |
else: | |
st.warning("Please enter a valid username.") | |
if st.session_state.login_step == 'enter_app': | |
if st.button("🎯 Enter GeneXam Application", use_container_width=True): | |
st.session_state.username = username_input | |
st.rerun() | |
# Show instructions | |
if st.session_state.login_step == 'username': | |
st.markdown(""" | |
### How to Login: | |
1. Enter your username and click 'Login' to verify your account | |
2. After verification, click 'Enter GeneXam Application' to start using the system | |
""") | |
else: | |
# Main application code (ส่วนที่เหลือเหมือนเดิม) | |
st.title(f"Welcome to GeneXam, {st.session_state.username}! 🎓") | |
# Show current usage stats | |
stats = get_user_stats(st.session_state.username) | |
if stats: | |
remaining = DAILY_API_LIMIT - stats['daily_count'] | |
st.info(f""" | |
📊 Usage Statistics: | |
- Daily Generations Remaining: {remaining}/{DAILY_API_LIMIT} | |
- Total All-Time Generations: {stats['total_count']} | |
""") | |
# Create tabs for input methods | |
tab1, tab2 = st.tabs(["Text Input", "PDF Upload"]) | |
with tab1: | |
knowledge_material = st.text_area("Enter knowledge material to generate exam questions:") | |
word_count = len(knowledge_material.split()) | |
if word_count > WORD_LIMIT: | |
st.error(f"Text exceeds {WORD_LIMIT:,} words. Please shorten your content.") | |
with tab2: | |
st.info(f"Maximum content length: {WORD_LIMIT:,} words") | |
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf") | |
if uploaded_file is not None: | |
pdf_content, error = extract_text_from_pdf(uploaded_file) | |
if error: | |
st.error(error) | |
else: | |
st.success("PDF processed successfully!") | |
knowledge_material = pdf_content | |
# Question generation options | |
col1, col2 = st.columns(2) | |
with col1: | |
question_type = st.selectbox( | |
"Select question type:", | |
["Multiple Choice", "Fill in the Blank", "Open-ended", "True/False"] | |
) | |
if question_type == "Multiple Choice": | |
num_choices = st.selectbox("Select number of choices:", [3, 4, 5]) | |
cognitive_level = st.selectbox( | |
"Select cognitive level:", | |
["Recall", "Understanding", "Application", "Analysis", "Synthesis", "Evaluation"] | |
) | |
with col2: | |
case_based = st.checkbox("Generate case-based medical exam questions") | |
extra_instructions = st.text_area("Additional instructions (optional):") | |
# Generate questions button | |
if st.button("Generate Questions"): | |
if 'knowledge_material' in locals() and knowledge_material.strip(): | |
with st.spinner("Generating questions..."): | |
questions = generate_questions_with_retry( | |
st.session_state['username'], | |
knowledge_material, | |
question_type, | |
cognitive_level, | |
extra_instructions, | |
case_based, | |
num_choices if question_type == "Multiple Choice" else None | |
) | |
if questions: | |
st.write("### Generated Exam Questions:") | |
st.write(questions) | |
# Update displayed stats after generation | |
new_stats = get_user_stats(st.session_state['username']) | |
if new_stats: | |
remaining = DAILY_API_LIMIT - new_stats['daily_count'] | |
st.info(f""" | |
📊 Updated Usage Statistics: | |
- Daily Generations Remaining: {remaining}/{DAILY_API_LIMIT} | |
- Total All-Time Generations: {new_stats['total_count']} | |
""") | |
# Download button | |
st.download_button( | |
label="Download Questions", | |
data=questions, | |
file_name='generated_questions.txt', | |
mime='text/plain' | |
) | |
else: | |
st.warning("Please enter knowledge material or upload a PDF file first.") |