Spaces:
Sleeping
Sleeping
Update app(backup2).py
Browse files- app(backup2).py +159 -107
app(backup2).py
CHANGED
@@ -4,10 +4,15 @@ from openai import OpenAI
|
|
4 |
import time
|
5 |
import gspread
|
6 |
from oauth2client.service_account import ServiceAccountCredentials
|
|
|
|
|
7 |
|
8 |
# Set up OpenAI client
|
9 |
client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
|
10 |
|
|
|
|
|
|
|
11 |
# Google Sheets setup remains the same
|
12 |
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
|
13 |
creds = ServiceAccountCredentials.from_json_keyfile_name("genexam-2c8c645ecc0d.json", scope)
|
@@ -34,52 +39,131 @@ def update_api_usage(username):
|
|
34 |
except Exception as e:
|
35 |
st.error(f"Error updating API usage: {str(e)}")
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def generate_questions_with_retry(knowledge_material, question_type, cognitive_level, extra_instructions, case_based, num_choices=None, max_retries=3):
|
38 |
# Adjust number of questions based on type
|
39 |
if question_type == "Multiple Choice":
|
40 |
num_questions = 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
elif question_type == "Fill in the Blank":
|
42 |
num_questions = 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
elif question_type == "True/False":
|
44 |
num_questions = 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
else: # Open-ended
|
46 |
num_questions = 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# Base prompt
|
49 |
-
prompt = f"Generate {num_questions} {question_type.lower()} exam questions based on {cognitive_level.lower()} level from the following material:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Modify prompt for case-based medical situations
|
52 |
if case_based:
|
53 |
-
prompt = f"Generate {num_questions} {question_type.lower()} exam questions based on {cognitive_level.lower()} level
|
54 |
-
if question_type != "Fill in the Blank":
|
55 |
-
prompt += " Provide answers with short explanations."
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
prompt += f" Each multiple choice question should have {num_choices} choices."
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
retries = 0
|
65 |
while retries < max_retries:
|
66 |
try:
|
67 |
response = client.chat.completions.create(
|
68 |
-
model="gpt-4o-mini",
|
69 |
messages=[
|
70 |
-
{"role": "system", "content": "You are
|
71 |
{"role": "user", "content": prompt}
|
72 |
-
]
|
|
|
|
|
73 |
)
|
74 |
return response.choices[0].message.content
|
75 |
except Exception as e:
|
76 |
retries += 1
|
|
|
77 |
if retries == max_retries:
|
78 |
st.error(f"Failed to generate questions after {max_retries} attempts. Error: {str(e)}")
|
79 |
return None
|
80 |
-
time.sleep(2)
|
81 |
|
82 |
# ระบบ login
|
|
|
83 |
if 'username' not in st.session_state:
|
84 |
st.title("Login")
|
85 |
username_input = st.text_input("Enter your username:")
|
@@ -94,106 +178,74 @@ if 'username' not in st.session_state:
|
|
94 |
else:
|
95 |
st.warning("Please enter a valid username.")
|
96 |
else:
|
97 |
-
# Main App after login
|
98 |
st.title(f"Welcome, {st.session_state['username']}! Generate your exam questions")
|
99 |
-
|
100 |
-
# Input field for knowledge material (text) with 3,000-word limit
|
101 |
-
knowledge_material = st.text_area("Enter knowledge material to generate exam questions:")
|
102 |
|
103 |
-
#
|
104 |
-
|
105 |
-
st.warning("Please limit the knowledge material to 3,000 words or fewer.")
|
106 |
-
|
107 |
-
# File uploader for PDFs (limited to 5 MB)
|
108 |
-
uploaded_file = st.file_uploader("Upload a file (PDF)", type="pdf")
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
st.
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
["Recall", "Understanding", "Application", "Analysis", "Synthesis", "Evaluation"])
|
128 |
-
|
129 |
-
# Checkbox for Case-Based Medical Situations
|
130 |
-
case_based = st.checkbox("Generate case-based medical exam questions")
|
131 |
|
132 |
-
#
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
# Generate questions button
|
136 |
-
if 'previous_questions' not in st.session_state:
|
137 |
-
st.session_state['previous_questions'] = []
|
138 |
-
|
139 |
if st.button("Generate Questions"):
|
140 |
-
if
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
if questions:
|
152 |
-
st.write("Generated Exam Questions:")
|
153 |
-
st.write(questions)
|
154 |
-
|
155 |
-
# Avoid showing repeated content in future requests
|
156 |
-
st.session_state['previous_questions'].append(questions)
|
157 |
-
|
158 |
-
# Option to download the questions as a text file
|
159 |
-
st.download_button(
|
160 |
-
label="Download Questions",
|
161 |
-
data=questions,
|
162 |
-
file_name='generated_questions.txt',
|
163 |
-
mime='text/plain'
|
164 |
-
)
|
165 |
-
else:
|
166 |
-
st.warning("Please reduce the word count to 3,000 or fewer.")
|
167 |
-
|
168 |
-
# Button to generate more questions based on the same material
|
169 |
-
if st.button("Generate More Questions"):
|
170 |
-
if len(knowledge_material.split()) <= 3000:
|
171 |
-
# Regenerate new questions, trying to avoid repeated content
|
172 |
-
questions = generate_questions_with_retry(
|
173 |
-
knowledge_material,
|
174 |
-
question_type,
|
175 |
-
cognitive_level,
|
176 |
-
extra_instructions,
|
177 |
-
case_based,
|
178 |
-
num_choices
|
179 |
-
)
|
180 |
-
|
181 |
-
# Check if the new set of questions is not the same as the previous set
|
182 |
-
if questions and questions not in st.session_state['previous_questions']:
|
183 |
-
st.write("Generated More Exam Questions:")
|
184 |
-
st.write(questions)
|
185 |
-
|
186 |
-
# Append the new questions to the session state
|
187 |
-
st.session_state['previous_questions'].append(questions)
|
188 |
-
|
189 |
-
# Option to download the new set of questions
|
190 |
-
st.download_button(
|
191 |
-
label="Download More Questions",
|
192 |
-
data=questions,
|
193 |
-
file_name='more_generated_questions.txt',
|
194 |
-
mime='text/plain'
|
195 |
)
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
else:
|
199 |
-
st.warning("Please
|
|
|
4 |
import time
|
5 |
import gspread
|
6 |
from oauth2client.service_account import ServiceAccountCredentials
|
7 |
+
import PyPDF2
|
8 |
+
import io
|
9 |
|
10 |
# Set up OpenAI client
|
11 |
client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
|
12 |
|
13 |
+
# Constants
|
14 |
+
WORD_LIMIT = 8000
|
15 |
+
|
16 |
# Google Sheets setup remains the same
|
17 |
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
|
18 |
creds = ServiceAccountCredentials.from_json_keyfile_name("genexam-2c8c645ecc0d.json", scope)
|
|
|
39 |
except Exception as e:
|
40 |
st.error(f"Error updating API usage: {str(e)}")
|
41 |
|
42 |
+
def extract_text_from_pdf(pdf_file):
|
43 |
+
"""Simple PDF text extraction with word limit check"""
|
44 |
+
try:
|
45 |
+
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file.read()))
|
46 |
+
text_content = ""
|
47 |
+
for page in pdf_reader.pages:
|
48 |
+
text_content += page.extract_text() + "\n"
|
49 |
+
|
50 |
+
word_count = len(text_content.split())
|
51 |
+
if word_count > WORD_LIMIT:
|
52 |
+
return None, f"PDF content exceeds {WORD_LIMIT:,} words (contains {word_count:,} words). Please use a shorter document."
|
53 |
+
return text_content, None
|
54 |
+
except Exception as e:
|
55 |
+
return None, f"Error processing PDF: {str(e)}"
|
56 |
+
|
57 |
def generate_questions_with_retry(knowledge_material, question_type, cognitive_level, extra_instructions, case_based, num_choices=None, max_retries=3):
|
58 |
# Adjust number of questions based on type
|
59 |
if question_type == "Multiple Choice":
|
60 |
num_questions = 3
|
61 |
+
format_instructions = f"""
|
62 |
+
For each multiple choice question:
|
63 |
+
1. Present the question clearly
|
64 |
+
2. Provide {num_choices} choices labeled with A, B, C{', D' if num_choices > 3 else ''}{', E' if num_choices > 4 else ''} after get new line from question
|
65 |
+
3. After all questions, provide an ANSWER KEY section with:
|
66 |
+
- The correct answer letter for each question
|
67 |
+
- A brief explanation of why this is the correct answer
|
68 |
+
- Why other options are incorrect
|
69 |
+
"""
|
70 |
elif question_type == "Fill in the Blank":
|
71 |
num_questions = 10
|
72 |
+
format_instructions = """
|
73 |
+
For each fill-in-the-blank question:
|
74 |
+
1. Present the question with a clear blank space indicated by _____
|
75 |
+
2. After all questions, provide an ANSWER KEY section with:
|
76 |
+
- The correct answer for each blank
|
77 |
+
- A brief explanation of why this answer is correct
|
78 |
+
- Any alternative acceptable answers if applicable
|
79 |
+
"""
|
80 |
elif question_type == "True/False":
|
81 |
num_questions = 5
|
82 |
+
format_instructions = """
|
83 |
+
For each true/false question:
|
84 |
+
1. Present the statement clearly
|
85 |
+
2. After all questions, provide an ANSWER KEY section with:
|
86 |
+
- Whether the statement is True or False
|
87 |
+
- A detailed explanation of why the statement is true or false
|
88 |
+
- The specific part of the source material that supports this answer
|
89 |
+
"""
|
90 |
else: # Open-ended
|
91 |
num_questions = 3
|
92 |
+
format_instructions = """
|
93 |
+
For each open-ended question:
|
94 |
+
1. Present the question clearly
|
95 |
+
2. After all questions, provide an ANSWER KEY section with:
|
96 |
+
- A structured scoring checklist of key points (minimum 3-5 points per question)
|
97 |
+
- Each key point should be worth a specific number of marks
|
98 |
+
- Total marks available for each question
|
99 |
+
- Sample answer that would receive full marks
|
100 |
+
- Common points that students might miss
|
101 |
+
"""
|
102 |
|
103 |
# Base prompt
|
104 |
+
prompt = f"""Generate {num_questions} {question_type.lower()} exam questions based on {cognitive_level.lower()} level from the following material:
|
105 |
+
|
106 |
+
{knowledge_material}
|
107 |
+
|
108 |
+
{format_instructions}
|
109 |
+
|
110 |
+
{extra_instructions}
|
111 |
+
|
112 |
+
Please format the output clearly with:
|
113 |
+
1. Questions section (numbered 1, 2, 3, etc.)
|
114 |
+
2. Answer Key section (clearly separated from questions)
|
115 |
+
3. Each answer should include explanation for better understanding
|
116 |
+
|
117 |
+
Make sure all questions and answers are directly related to the provided material."""
|
118 |
|
119 |
# Modify prompt for case-based medical situations
|
120 |
if case_based:
|
121 |
+
prompt = f"""Generate {num_questions} {question_type.lower()} case-based medical exam questions based on {cognitive_level.lower()} level.
|
|
|
|
|
122 |
|
123 |
+
Use this material as the medical knowledge base:
|
124 |
+
{knowledge_material}
|
|
|
125 |
|
126 |
+
Each question should:
|
127 |
+
1. Start with a medical case scenario/patient presentation
|
128 |
+
2. Include relevant clinical details
|
129 |
+
3. Ask about diagnosis, treatment, or management
|
130 |
+
4. Be at {cognitive_level.lower()} cognitive level
|
131 |
+
|
132 |
+
{format_instructions}
|
133 |
+
|
134 |
+
{extra_instructions}
|
135 |
+
|
136 |
+
Please format the output with:
|
137 |
+
1. Cases and Questions (numbered 1, 2, 3, etc.)
|
138 |
+
2. Detailed Answer Key section including:
|
139 |
+
- Correct answers
|
140 |
+
- Clinical reasoning
|
141 |
+
- Key diagnostic or treatment considerations
|
142 |
+
- Common pitfalls to avoid"""
|
143 |
|
144 |
retries = 0
|
145 |
while retries < max_retries:
|
146 |
try:
|
147 |
response = client.chat.completions.create(
|
148 |
+
model="gpt-4o-mini",
|
149 |
messages=[
|
150 |
+
{"role": "system", "content": "You are an expert exam question generator with deep knowledge in medical education. Create clear, well-structured questions with detailed answer keys and explanations."},
|
151 |
{"role": "user", "content": prompt}
|
152 |
+
],
|
153 |
+
temperature=0.7,
|
154 |
+
max_tokens=3000 # Increased to accommodate answers and explanations
|
155 |
)
|
156 |
return response.choices[0].message.content
|
157 |
except Exception as e:
|
158 |
retries += 1
|
159 |
+
st.warning(f"Attempt {retries} failed. Retrying... Error: {str(e)}")
|
160 |
if retries == max_retries:
|
161 |
st.error(f"Failed to generate questions after {max_retries} attempts. Error: {str(e)}")
|
162 |
return None
|
163 |
+
time.sleep(2)
|
164 |
|
165 |
# ระบบ login
|
166 |
+
# Main Streamlit interface
|
167 |
if 'username' not in st.session_state:
|
168 |
st.title("Login")
|
169 |
username_input = st.text_input("Enter your username:")
|
|
|
178 |
else:
|
179 |
st.warning("Please enter a valid username.")
|
180 |
else:
|
|
|
181 |
st.title(f"Welcome, {st.session_state['username']}! Generate your exam questions")
|
|
|
|
|
|
|
182 |
|
183 |
+
# Create tabs for input methods
|
184 |
+
tab1, tab2 = st.tabs(["Text Input", "PDF Upload"])
|
|
|
|
|
|
|
|
|
185 |
|
186 |
+
with tab1:
|
187 |
+
knowledge_material = st.text_area("Enter knowledge material to generate exam questions:")
|
188 |
+
word_count = len(knowledge_material.split())
|
189 |
+
if word_count > WORD_LIMIT:
|
190 |
+
st.error(f"Text exceeds {WORD_LIMIT:,} words. Please shorten your content.")
|
191 |
+
|
192 |
+
with tab2:
|
193 |
+
st.info(f"Maximum content length: {WORD_LIMIT:,} words")
|
194 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
|
195 |
+
|
196 |
+
if uploaded_file is not None:
|
197 |
+
pdf_content, error = extract_text_from_pdf(uploaded_file)
|
198 |
+
if error:
|
199 |
+
st.error(error)
|
200 |
+
else:
|
201 |
+
st.success("PDF processed successfully!")
|
202 |
+
knowledge_material = pdf_content
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
# Question generation options
|
205 |
+
col1, col2 = st.columns(2)
|
206 |
+
|
207 |
+
with col1:
|
208 |
+
question_type = st.selectbox(
|
209 |
+
"Select question type:",
|
210 |
+
["Multiple Choice", "Fill in the Blank", "Open-ended", "True/False"]
|
211 |
+
)
|
212 |
+
|
213 |
+
if question_type == "Multiple Choice":
|
214 |
+
num_choices = st.selectbox("Select number of choices:", [3, 4, 5])
|
215 |
+
|
216 |
+
cognitive_level = st.selectbox(
|
217 |
+
"Select cognitive level:",
|
218 |
+
["Recall", "Understanding", "Application", "Analysis", "Synthesis", "Evaluation"]
|
219 |
+
)
|
220 |
+
|
221 |
+
with col2:
|
222 |
+
case_based = st.checkbox("Generate case-based medical exam questions")
|
223 |
+
extra_instructions = st.text_area("Additional instructions (optional):")
|
224 |
|
225 |
# Generate questions button
|
|
|
|
|
|
|
226 |
if st.button("Generate Questions"):
|
227 |
+
if 'knowledge_material' in locals() and knowledge_material.strip():
|
228 |
+
with st.spinner("Generating questions..."):
|
229 |
+
# Your existing generate_questions_with_retry function call here
|
230 |
+
questions = generate_questions_with_retry(
|
231 |
+
knowledge_material,
|
232 |
+
question_type,
|
233 |
+
cognitive_level,
|
234 |
+
extra_instructions,
|
235 |
+
case_based,
|
236 |
+
num_choices if question_type == "Multiple Choice" else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
)
|
238 |
+
|
239 |
+
if questions:
|
240 |
+
st.write("### Generated Exam Questions:")
|
241 |
+
st.write(questions)
|
242 |
+
|
243 |
+
# Download button
|
244 |
+
st.download_button(
|
245 |
+
label="Download Questions",
|
246 |
+
data=questions,
|
247 |
+
file_name='generated_questions.txt',
|
248 |
+
mime='text/plain'
|
249 |
+
)
|
250 |
else:
|
251 |
+
st.warning("Please enter knowledge material or upload a PDF file first.")
|