|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import os |
|
import gradio as gr |
|
|
|
model_name = "scb10x/llama-3-typhoon-v1.5x-70b-instruct-awq" |
|
token = os.getenv("HF_TOKEN") |
|
|
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, token=token) |
|
|
|
def generate_text(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(inputs.input_ids, max_length=50) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
gr.Interface(fn=generate_text, inputs="text", outputs="text").launch() |