Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,19 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import os
|
|
|
4 |
|
5 |
model_name = "scb10x/llama-3-typhoon-v1.5x-70b-instruct-awq"
|
6 |
token = os.getenv("HF_TOKEN")
|
7 |
|
|
|
|
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, token=token).to(
|
10 |
|
11 |
def generate_text(prompt):
|
12 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(
|
13 |
outputs = model.generate(inputs.input_ids, max_length=50)
|
14 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
15 |
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import os
|
4 |
+
import torch
|
5 |
|
6 |
model_name = "scb10x/llama-3-typhoon-v1.5x-70b-instruct-awq"
|
7 |
token = os.getenv("HF_TOKEN")
|
8 |
|
9 |
+
# Check if CUDA is available
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, token=token).to(device)
|
14 |
|
15 |
def generate_text(prompt):
|
16 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
17 |
outputs = model.generate(inputs.input_ids, max_length=50)
|
18 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
19 |
|