Update app.py
Browse files
app.py
CHANGED
@@ -4,65 +4,52 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
4 |
from PIL import Image
|
5 |
import requests
|
6 |
import gradio as gr
|
7 |
-
import spaces
|
8 |
|
9 |
# Load model and tokenizer
|
10 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
model_name = 'scb10x/llama-3-typhoon-v1.5-8b-instruct-vision-preview'
|
12 |
|
13 |
-
@spaces.GPU(duration=
|
14 |
def load_model():
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
model_name,
|
17 |
-
|
18 |
-
torch_dtype=torch.float16 if device == 'cuda' else torch.float32,
|
19 |
device_map='auto',
|
20 |
trust_remote_code=True
|
21 |
)
|
22 |
-
|
23 |
return model
|
24 |
|
25 |
model = load_model()
|
26 |
-
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
28 |
|
29 |
-
def prepare_inputs(text, image
|
30 |
messages = [
|
31 |
{"role": "system", "content": "You are a helpful vision-capable assistant who eagerly converses with the user in their language."},
|
|
|
32 |
]
|
33 |
-
|
34 |
-
|
35 |
-
inputs_formatted = tokenizer.apply_chat_template(
|
36 |
-
messages,
|
37 |
-
add_generation_prompt=True,
|
38 |
-
tokenize=False
|
39 |
-
)
|
40 |
-
|
41 |
-
text_chunks = [tokenizer(chunk).input_ids for chunk in inputs_formatted.split('<|image|>')]
|
42 |
-
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1][1:], dtype=torch.long).unsqueeze(0).to(device)
|
43 |
-
attention_mask = torch.ones_like(input_ids).to(device)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
@spaces.GPU(duration=60) # Decorate the function for GPU use
|
48 |
def predict(prompt, img_url):
|
49 |
try:
|
50 |
-
image = Image.open(requests.get(img_url, stream=True).raw)
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
output_ids = model.generate(
|
56 |
-
|
57 |
images=image_tensor,
|
58 |
max_new_tokens=100,
|
59 |
-
|
60 |
temperature=0.2,
|
61 |
top_p=0.2,
|
62 |
repetition_penalty=1.0
|
63 |
)[0]
|
64 |
-
|
65 |
-
result = tokenizer.decode(output_ids[
|
66 |
return result
|
67 |
except Exception as e:
|
68 |
return str(e)
|
@@ -72,10 +59,12 @@ inputs = [
|
|
72 |
gr.Textbox(label="Prompt", placeholder="Ask about the food in the image"),
|
73 |
gr.Textbox(label="Image URL", placeholder="Enter an image URL")
|
74 |
]
|
75 |
-
|
76 |
outputs = gr.Textbox(label="Generated Output")
|
77 |
|
78 |
gr.Interface(
|
79 |
-
fn=predict,
|
|
|
|
|
|
|
80 |
description="This model can analyze food images and answer questions about them."
|
81 |
-
).launch()
|
|
|
4 |
from PIL import Image
|
5 |
import requests
|
6 |
import gradio as gr
|
7 |
+
import spaces
|
8 |
|
9 |
# Load model and tokenizer
|
|
|
10 |
model_name = 'scb10x/llama-3-typhoon-v1.5-8b-instruct-vision-preview'
|
11 |
|
12 |
+
@spaces.GPU(duration=120) # ใช้ GPU เป็นเวลา 120 วินาที
|
13 |
def load_model():
|
14 |
model = AutoModelForCausalLM.from_pretrained(
|
15 |
model_name,
|
16 |
+
torch_dtype=torch.float16,
|
|
|
17 |
device_map='auto',
|
18 |
trust_remote_code=True
|
19 |
)
|
|
|
20 |
return model
|
21 |
|
22 |
model = load_model()
|
|
|
23 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
24 |
|
25 |
+
def prepare_inputs(text, image):
|
26 |
messages = [
|
27 |
{"role": "system", "content": "You are a helpful vision-capable assistant who eagerly converses with the user in their language."},
|
28 |
+
{"role": "user", "content": f"<image>\n{text}"}
|
29 |
]
|
30 |
+
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
|
31 |
+
return inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
@spaces.GPU(duration=60) # ใช้ GPU เป็นเวลา 60 วินาที
|
|
|
|
|
34 |
def predict(prompt, img_url):
|
35 |
try:
|
36 |
+
image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
37 |
+
image = image.resize((model.config.image_size, model.config.image_size))
|
38 |
+
image_tensor = model.preprocess_images([image]).to(model.device)
|
39 |
+
|
40 |
+
inputs = prepare_inputs(prompt, image)
|
41 |
+
|
42 |
output_ids = model.generate(
|
43 |
+
inputs,
|
44 |
images=image_tensor,
|
45 |
max_new_tokens=100,
|
46 |
+
do_sample=True,
|
47 |
temperature=0.2,
|
48 |
top_p=0.2,
|
49 |
repetition_penalty=1.0
|
50 |
)[0]
|
51 |
+
|
52 |
+
result = tokenizer.decode(output_ids[inputs.shape[1]:], skip_special_tokens=True).strip()
|
53 |
return result
|
54 |
except Exception as e:
|
55 |
return str(e)
|
|
|
59 |
gr.Textbox(label="Prompt", placeholder="Ask about the food in the image"),
|
60 |
gr.Textbox(label="Image URL", placeholder="Enter an image URL")
|
61 |
]
|
|
|
62 |
outputs = gr.Textbox(label="Generated Output")
|
63 |
|
64 |
gr.Interface(
|
65 |
+
fn=predict,
|
66 |
+
inputs=inputs,
|
67 |
+
outputs=outputs,
|
68 |
+
title="Food Image AI Assistant",
|
69 |
description="This model can analyze food images and answer questions about them."
|
70 |
+
).launch()
|