Spaces:
Runtime error
Runtime error
Jeffrey Rathgeber Jr
commited on
testloadmodel0
Browse files
app.py
CHANGED
@@ -16,39 +16,39 @@ if option == 'MILESTONE 3':
|
|
16 |
|
17 |
st.write('test1')
|
18 |
|
19 |
-
model_name_0 = "
|
20 |
model_0 = AutoModelForSequenceClassification.from_pretrained(model_name_0)
|
21 |
tokenizer_0 = AutoTokenizer.from_pretrained(model_name_0)
|
22 |
classifier_0 = pipeline(task="sentiment-analysis", model=model_0, tokenizer=tokenizer_0)
|
23 |
|
24 |
-
model_name_1 = "Rathgeberj/milestone3_1"
|
25 |
-
model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1)
|
26 |
-
tokenizer_1 = AutoTokenizer.from_pretrained(model_name_1)
|
27 |
-
classifier_1 = pipeline(task="sentiment-analysis", model=model_1, tokenizer=tokenizer_1)
|
28 |
-
|
29 |
-
model_name_2 = "Rathgeberj/milestone3_2"
|
30 |
-
model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2)
|
31 |
-
tokenizer_2 = AutoTokenizer.from_pretrained(model_name_2)
|
32 |
-
classifier_2 = pipeline(task="sentiment-analysis", model=model_2, tokenizer=tokenizer_2)
|
33 |
-
|
34 |
-
model_name_3 = "Rathgeberj/milestone3_3"
|
35 |
-
model_3 = AutoModelForSequenceClassification.from_pretrained(model_name_3)
|
36 |
-
tokenizer_3 = AutoTokenizer.from_pretrained(model_name_3)
|
37 |
-
classifier_3 = pipeline(task="sentiment-analysis", model=model_3, tokenizer=tokenizer_3)
|
38 |
-
|
39 |
-
model_name_4 = "Rathgeberj/milestone3_4"
|
40 |
-
model_4 = AutoModelForSequenceClassification.from_pretrained(model_name_4)
|
41 |
-
tokenizer_4 = AutoTokenizer.from_pretrained(model_name_4)
|
42 |
-
classifier_4 = pipeline(task="sentiment-analysis", model=model_4, tokenizer=tokenizer_4)
|
43 |
-
|
44 |
-
model_name_5 = "Rathgeberj/milestone3_5"
|
45 |
-
model_5 = AutoModelForSequenceClassification.from_pretrained(model_name_5)
|
46 |
-
tokenizer_5 = AutoTokenizer.from_pretrained(model_name_5)
|
47 |
-
classifier_5 = pipeline(task="sentiment-analysis", model=model_5, tokenizer=tokenizer_5)
|
48 |
-
|
49 |
-
models = [model_0, model_1, model_2, model_3, model_4, model_5]
|
50 |
-
tokenizers = [tokenizer_0, tokenizer_1, tokenizer_2, tokenizer_3, tokenizer_4, tokenizer_5]
|
51 |
-
classifiers = [classifier_0, classifier_1, classifier_2, classifier_3, classifier_4, classifier_5]
|
52 |
|
53 |
# X_train = [textIn]
|
54 |
# batch = tokenizer(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
|
|
|
16 |
|
17 |
st.write('test1')
|
18 |
|
19 |
+
model_name_0 = "milestone3_0"
|
20 |
model_0 = AutoModelForSequenceClassification.from_pretrained(model_name_0)
|
21 |
tokenizer_0 = AutoTokenizer.from_pretrained(model_name_0)
|
22 |
classifier_0 = pipeline(task="sentiment-analysis", model=model_0, tokenizer=tokenizer_0)
|
23 |
|
24 |
+
# model_name_1 = "Rathgeberj/milestone3_1"
|
25 |
+
# model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1)
|
26 |
+
# tokenizer_1 = AutoTokenizer.from_pretrained(model_name_1)
|
27 |
+
# classifier_1 = pipeline(task="sentiment-analysis", model=model_1, tokenizer=tokenizer_1)
|
28 |
+
|
29 |
+
# model_name_2 = "Rathgeberj/milestone3_2"
|
30 |
+
# model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2)
|
31 |
+
# tokenizer_2 = AutoTokenizer.from_pretrained(model_name_2)
|
32 |
+
# classifier_2 = pipeline(task="sentiment-analysis", model=model_2, tokenizer=tokenizer_2)
|
33 |
+
|
34 |
+
# model_name_3 = "Rathgeberj/milestone3_3"
|
35 |
+
# model_3 = AutoModelForSequenceClassification.from_pretrained(model_name_3)
|
36 |
+
# tokenizer_3 = AutoTokenizer.from_pretrained(model_name_3)
|
37 |
+
# classifier_3 = pipeline(task="sentiment-analysis", model=model_3, tokenizer=tokenizer_3)
|
38 |
+
|
39 |
+
# model_name_4 = "Rathgeberj/milestone3_4"
|
40 |
+
# model_4 = AutoModelForSequenceClassification.from_pretrained(model_name_4)
|
41 |
+
# tokenizer_4 = AutoTokenizer.from_pretrained(model_name_4)
|
42 |
+
# classifier_4 = pipeline(task="sentiment-analysis", model=model_4, tokenizer=tokenizer_4)
|
43 |
+
|
44 |
+
# model_name_5 = "Rathgeberj/milestone3_5"
|
45 |
+
# model_5 = AutoModelForSequenceClassification.from_pretrained(model_name_5)
|
46 |
+
# tokenizer_5 = AutoTokenizer.from_pretrained(model_name_5)
|
47 |
+
# classifier_5 = pipeline(task="sentiment-analysis", model=model_5, tokenizer=tokenizer_5)
|
48 |
+
|
49 |
+
# models = [model_0, model_1, model_2, model_3, model_4, model_5]
|
50 |
+
# tokenizers = [tokenizer_0, tokenizer_1, tokenizer_2, tokenizer_3, tokenizer_4, tokenizer_5]
|
51 |
+
# classifiers = [classifier_0, classifier_1, classifier_2, classifier_3, classifier_4, classifier_5]
|
52 |
|
53 |
# X_train = [textIn]
|
54 |
# batch = tokenizer(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
|